

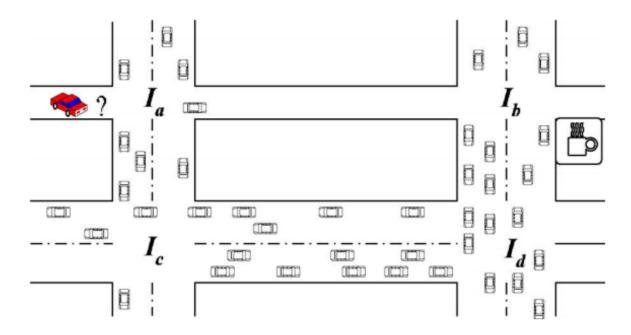
VANETS Intelligent Transportation Systems

Vida Rolland

DTN: Delay Tolerant Network

- If nodes are sparse, the network connectivity can be broken
- Topology holes will appear
- This can be handled by the **carry-and-forward** method
 - Data-mules
- It is possible if the message is still valid in spite of the delay
- Mobility prediction is very useful

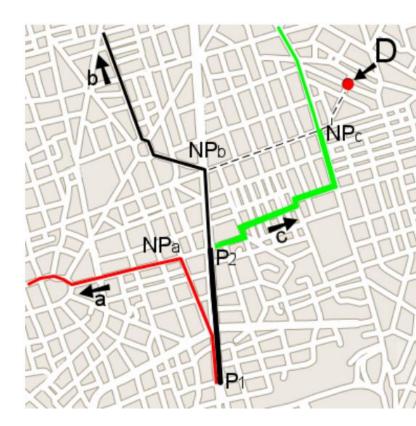
Intelligent Transportation Systems


VADD: Vehicle-Assisted Data Delivery in VANET

- Carry-and-forward, optimized to the lowest delivery delay
 - Prefers radio links, as they are faster than using data mule cars
 - If data has to be carried by a car, it chooses the fastest car that goes in the good direction
 - Dynamic routing step by step
 - VADD delay model
 - Distances between intersections
 - Average vehicle density on each segment
 - Average vehicle speed on each segment

Stochastic model

- We cannot calculate in advance the entire path
- It depends on whether in a given intersection, at a given moment there will be a car to forward the message in a given direction, or not
- We can calculate probabilities



3

GeOpps: Geographical Opportunistic Routing

- Assumes that cars know in advance their trajectory
 - Using some navigation, travel planner software
- Next hop selected in three steps:
 - Each neighbor calculates for its trajectory the closest point to the destination
 - It calculates how much time it takes to that closest point
 - If the trajectory of one of the neighbors gets closer to the destination than that of the current node, then the packet is taken over
- If the car changes its trajectory, everything should be recalculated

VANET broadcast protocols

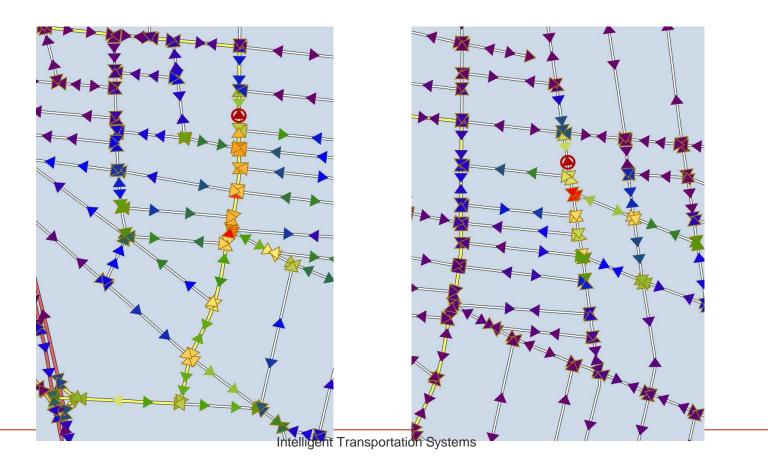
- We have a target zone, within which all the vehicles should receive the message (Broadcast Domain)
 - However, the load on the network should be minimized, (avoid broadcast storms)

DECA: Density-Aware Reliable Broadcasting

- Does not use position information
- Beacon messages sent to discover neighbors
- Network load is minimized by chosing as next hop the neighbor that has most neighbors

5

Intelligent flooding through gossiping


- Messages are rebroadcast or dropped with a given probability p
 - Carefully Localized Urban Dissemination (CLoUD)
- The drop probability on a given road segment depends on the probability of cars on that segment heading towards the source of the flooding (where the danger was detected)
- Needs a traffic database
 - Turn probabilities at each intersection
 - Stop probability on each segment
 - Average traffic density in different periods of the day
- Increasing reliability with a voting mechanism
 - The message is dropped only if there are sufficent votes to drop it
- Miklos Mate, Rolland Vida, "Reliable Gossiping in Urban Environments", in Proceedings of 72nd IEEE Vehicular Technology Conference VTC-Fall, Ottawa, Canada, September 2010.

6

Intelligent flooding through gossiping

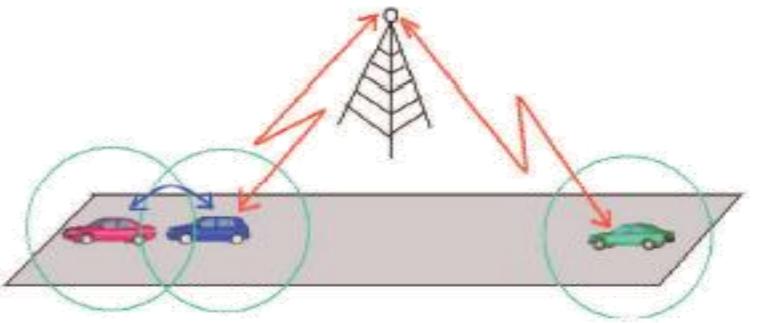
- Simulation results for the CLoUD protocol
 - Digital map of Budapest, warmer colors mean more messages received by that car
 - If the problem occurs on a main road (left), the message is spread more broadly
 - If the problem occurs on a side road (right), the flooding dies out fast

Communication architectures

Car-to-Car (C2C) or Vehicle-to-Vehicle (V2V)

- Cars communicate directly among each other
- □ Car-to-Infrastructure (C2I) or Vehicle-to-Infrastructure (V2I)
 - Communication among cars and the deployed infrastructure
 - Mobile base stations
 - Sensors, data storage, gateways deployed next to the road
 - RSU Road Side Unit
- Car-to-Pedestrian
 - In between C2C and C2I
 - □ Different mobility models

Communication architectures


Centralized •Traffic data is periodically sent to the central database Cars receive traffic information from the central database Distributed Traffic data •Ad hoc tempomat •Collision avoidance

		Centralized	Distributed
t	Coverage/ range	Complete	Eow, separated islands
	Speed		
	Reliability		© collisions, interferences
	Capacity	🕲 limited	Iimited
	Price	🙁 yes	ono 😳 no

Hybrid solutions

- Some cars can communicate with the central entity, through the mobile network
 - E.g., LTE
- Others communicate only with each other
 - They can not, or do not want to communicate with the central entity

