
11/19/2015

1

Transmission Control

Protocol (TCP)
Sonkoly Balázs

sonkoly@tmit.bme.hu

2015.11.10.

2015.11.10. TCP 2

TCP header format
source TCP user (16 bits) destination TCP user (16 bits)

seq. number of the first data
byte in this segment (32 bits)

seq. number of the next data byte
TCP expects to receive (32 bits)32-bit words header

length (4 bits)

• URG: urgent
• ACK: acknowledgement
• PSH: push
• RST: reset
• SYN: synchronize
• FIN: finish

number of data bytes beginning
with the one indicated in the

ack. field that receiver is willing
to accept (16 bits)

error detection code (16 bits) points to the last byte in a
sequence of urgent data (16 bits)

extend to 4-byte units

11/19/2015

2

2015.11.10. TCP 3

Connection setup

client (initiator) serverstarting sequence
number is chosen by
random

states its
current seq.
number

acknowledges
the client’s seq.
number

acknowledges
the receiver’s
seq. number

3-way handshake

2015.11.10. TCP 4

Connection release

client (initiator) server

2-way handshake

independent release
in each direction!

11/19/2015

3

2015.11.10. TCP 5

State transition diagram

Source: http://en.wikipedia.org/wiki/Image:Tcp_state_diagram.svg

event/action

2015.11.10. TCP 6

TCP flow control – example

... 1000, 1001 2400, 2401 1000, 1001 2400, 2401 ...

ready to send
1400 bytes ready to receive 1400 bytesshrinks its window with

each transmission!

1001 2401 ...

ISN

SND.UNA

1601

SND.NXT

2601 ...1601

acks 3 segments (600 bytes) but
only prepared to receive 1000 bytes

1001 2401 ...2001

SND.NXT

ACK = 1601
W = 1000

2601 ...1601 2001

adjusts its window!

1001 2601 ...2001

SND.NXT

1601

SND.UNAISN

WND = 1000

2601 ...1601

exhausts its credit!

2601 ... 4001
acks 1000 bytes and restores
the original amount of credit

...

2601 ... 4001

...

received new credit

Assume 200 bytes in each segment!

11/19/2015

4

2015.11.10. TCP 7

Slow start
� Determine available capacity at first
� TCP transmission is constrained
� awnd = min (adwnd, cwnd)

� allowed window (in segments)
� advertised window

� set by receiver
� unused credit + granted in the most recent ACK

� congestion window
� set by sender

� Algorithm
� set cwnd = 1
� cwnd++ for each received ACK (~ doubled in one RTT)
� indication of loss

� timeout
� receipt of duplicate ACKs

� end of slow start
� loss OR
� cwnd exceeds a threshold (ssthresh)

� Properties
� exponential growth (not very slow!)
� but slower growth compared to burst arrival

2015.11.10. TCP 8

Slow start – example

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

11/19/2015

5

2015.11.10. TCP 9

Slow start – sequence plot

� data segments

� ACKs

� cwnd doubles every
round-trip time

Time

Sequence No

.

.

.

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 16

RTT

2015.11.10. TCP 10

Congestion avoidance

� Easy to drive the network in saturation
� but hard for the network to recover
� Slow start is too aggressive
� Solution: slow start + linear growth in cwnd
� Initialization
� cwnd = 1
� ssthresh = (e.g.) 65,535 bytes (OR arbitrarily high – RFC 2581)

� After timeout
� ssthresh = cwnd / 2
� cwnd = 1 → slow start until cwnd == ssthresh
� for cwnd > ssthresh
� increase cwnd by one for each RTT (Additive Increase)
� in practice: for each RTT

for each ACKin segments:

in bytes:

11/19/2015

6

2015.11.10. TCP 11

Congestion avoidance

� Goals (RFC 1122)
� keep cwnd around optimal size as much as possible
� Slow start
� increase cwnd rapidly to reach maximum safety transfer rate as fast as

possible
� max. safety: half of the rate that caused packet loss (conservative!)

� Congestion avoidance
� increase cwnd slowly to avoid packet losses as long as possible

2015.11.10. TCP 12

Congestion avoidance – sequence plot

� data segments

� ACKs

� cwnd is increased
by 1 for each RTT

Time

Sequence No
cwnd = 8

cwnd = 9

cwnd = 10

RTT

11/19/2015

7

2015.11.10. TCP 13

Fast retransmit

� After a segment lost TCP may be slow to retransmit
� if this is the only missing segment
� it delays the whole flow transmission
� receiver has to wait for the missing segment

� Solution: retransmit packet without waiting for RTO!
� receiver
� if receives a segment out of order → ACK for the last inordered segment

that was received
� continues repeat this ACK until missing segment arrives

� source
� when receives a duplicate ACK it means

1. the segment following the ACKed segment was delayed
� no action needed

2. segment was lost
� retransmission needed

� test
� wait for the next ACK
� 3 dup ACKs → retransmit the segment

� TCP Tahoe (implemented in 4.3 BSD Tahoe, Net/1, ~1988)

2015.11.10. TCP 14

Fast retransmit – example
Sender Receiver

X

3 dup ACKs

11/19/2015

8

2015.11.10. TCP 15

Fast retransmit (TCP Tahoe) – sequence plot

Time

Sequence No

X

RTT 3rd dup ACK

fast retransmit

slow start

2015.11.10. TCP 16

Fast retransmit – TCP Tahoe

� TCP Tahoe
� slow start and congestion avoidance phases
� + fast retransmit

� Problem
� after fast retransmit we know that congestion occured
� BUT make slow start is too conservative
� we know that consecutive packets have been received
� Tahoe is very sensitive to packet loss (1% loss rate may cause 50-75% decrease in throughput!)

� Solution: two type of congestion
� RTO expires → serious congestion
� 3 dup ACKs→ no serious congestion (at least 3 packets could arrive)

c
w
n
d

11/19/2015

9

2015.11.10. TCP 17

Fast recovery

� Goal: avoid slow start!
� after receiving the third dup ACK

� ssthresh = cwnd / 2
� retransmit the segment (fast retransmit)
� cwnd = ssthresh + 3 (inflating the window)
� if additional dup ACKs arrives

� cwnd = cwnd + 1 (inflating the window)
� transmit a segment if possible

� if the next ACK arrives (for new segment)
� cwnd = ssthresh (deflating the window)

� Inflating the window
� dup ACK means → one packet arrived and cached at receiver
� one new packet can be sent

2015.11.10. TCP 18

Fast recovery – example

S
N

c
w
n
d

transmitted
segments

stable flow
(cong. avoidance)

source is unable
to send segments
until cwnd
regains its
former value

source is transmitting
segments

linear congestion
avoidance

cwnd = cwnd+1
per RTT

fast retransmit
after 3 dup
ACKs

ssthresh = cwnd/2
cwnd = cwnd/2 + 3

cwnd = cwnd+1
at each received
dup ACK

cwnd = cwnd+1
per RTT

cwnd = ssthresh

cumulative
ACK arrives

11/19/2015

10

2015.11.10. TCP 19

Fast recovery (TCP Reno) – sequence plot

Time

Sequence No

X

RTT 3rd dup ACK
fast retransmit

fast recovery

transmitting
segments
(if cwnd allows)

cumulative
ACK arrives

congestion avoidance
cwnd=9

cwnd=9/2+3=7

cwnd++
cwnd=4

2015.11.10. TCP 20

Fast recovery – TCP Reno

� TCP Reno
� implemented in 4.3 BSD Reno, Net/2, ~1990
� Slow start
� Congestion avoidance: AIMD (Additive Increase Multiplicative Decrease)
� Fast retransmit
� Fast recovery

� Problem
� multiple losses from a single window??

c
w
n
d

11/19/2015

11

2015.11.10. TCP 21

Summary of the algorithm (TCP Reno)

� Initialization
� cwnd = 1 (segment)
� ssthresh = 65,535 bytes

� TCP sender sends segment: effwnd
� maxwnd = min(cwnd, adwnd)
� effwnd = maxwnd – (lastbytesent – lastbyteacked)

� Congestion avoidance
� cwnd = cwnd + 1 for each RTT
� cwnd = cwnd + 1/cwnd for each ACK
� if congestion:

� ssthresh = max(2, min(cwnd, adwnd)/2)
� Slow start

� cwnd = 1
� cwnd = cwnd + 1 for each ACK
� if cwnd > ssthresh → congestion avoidance

� Fast recovery
� cwnd = ssthresh + 3
� if additional dup ACKs

� cwnd = cwnd + 1
� transmit segment if effwnd > 0

� if new ACK
� cwnd = ssthresh
� congestion avoidance

