Transmission Control
Protocol (TCP)

Sonkoly Balazs
sonkoly@tmit.bme.hu

2015.11.10.

TCP header format

| source TCP user (16 bits) |

| destmatlon TCP user (16 bits) |

imhar of tha navt data hwvtao |

seq. number of the firjrg urgem
« ACK: acknowledgement P
32-bit wordsheader |, bgy pien |

length (4 bits) <RST: reset
* SYN: synchronize

number of data bytes beginning
with the oneindicated in the
ack. field that receiver iswilling
to accept (16 bits)

bit 0 / “FIN finish |

/ Source &{rt 7

v Deftinat)'bn port

N Se;{uence number

|

@
_%‘ 4 10 Ackny(uledgement number ¥
& reserved ‘ Fla'gs Adv;rtised window
$ Checksum Urgent pointer1‘
! Options + padding 4 \
| error detectilon code (16 bits) | pointstotljtgle;st bytein a
Data sequence of urigent data (16 bits)

extend to 4-byte units

2015.11.10. TCP

11/19/2015

11/19/2015

Connection setup

client (initiator) | starting sequence server
number is chosen by

random

states its
current seq.

L

number

L» acknowledges
ACK the client's seq.
number

SYN

acknowledges
the receiver's
ACK seq. number

3-way handshake

2015.11.10. TCP 3

Connection release

client (initiator) server
independent release

FIN(X) in each direction!

 -‘

ACK(x+1)

FIN(Y)

ACK(y+1)

 -‘

2-way handshake

2015.11.10. TCP 4

‘ State transition diagram

. e UPUSU evert
event/action > dentreceer patn
———— server/sender path

(5tep 7 or the 3-way-nansnare) SYNISYNHACK

CONNECT/SYN

SYN
RECEIVED

ER 0 pm—
LISTEN/- A
| CLOSE/-
LISTEN
RST- : SEND/SYN I
SYN
SYNISYN+AGK (sinultancous open) |

Data exchange occurs
(st 3 handshake)
CLOSE/FIN
CLOSE/FIN

FINACK

FINWAIT1 |

Fi

FIN WAIT 2

‘ Active open

>| cLosING

Fazsive open]

CLOSE WAIT

CLOSE/FIN

FINACK

+ACKIACK

>| TIMEWAIT

Timeout

LAST ACK

FIN/ACK

(6o beck to seare) [0S~

Source: http://en.wikipedia.

Tep_state_diagram.svg

2015.11.10.

TCP 5

TCP flow control — example

... 1000, 1001 2400, 2401 ...

Assume 200 bytes in each segment!

... 1000, 1001 2400, 2401 ...

SN = 1001 I]

shrinks its window with
each transmission!

l ready to send

[J
ready to receive 1400 bytes

1400 bytes SN = 1207

S =
1001 1601 2401 .. N 1401 1601 2601 ...
| 1 1
I L 1 s | I
I;\‘l\é e SNDNXT N = 160; acks 3 segments (600 bytes) but
: only prepared to receive 1000 bytes
1001 2001 2401 ... 1601 2001 2601 ...
| — ACK = 1601 | —]
[| W =1000 I —]
SNDNXT ~ adjusts its window!
1001 1601 2001 2601 ...
| I — %
| | | I— SN = 2201
IsN SND.UNA SND.NXT

WND = 1000
1601

SN = 240, acks 1000 bytes and restores

received new credit

2601 ... \ the original amount of credit 2601.. 4001

o260
exhculjsfs its creditl _ACE 1400
W G

2601.. 4001

2015.11.10.

TCP 6

11/19/2015

Slow start

= Determine available capacity at first

= TCP transmission is constrained
o awnd = mn (adwnd, cwnd)
= allowed window (in segments)
= advertised window
Q set by receiver
0 unused credit + granted in the most recent ACK
= congestion window
a set by sender
= Algorithm
o setcwnd=1
o cwnd++ for each received ACK (~ doubled in one RTT)
o indication of loss
= timeout
= receipt of duplicate ACKs
o end of slow start
= lossOR
= cwnd exceeds a threshold (sst hr esh)
= Properties
o exponential growth (not very slow!)
o but slower growth compared to burst arrival

2015.11.10. TCP

Slow start — example

cwnd=1 —————Segmentt =~ |

ACK for segment 1

cwnd =2 segment 2
segment 3

ACK for segments 2+ 3

segment 4

segment 5 —
segment 6
segment 7

ACK for segments 4+6+6+7
cwnd =8

cwnd =4

2015.11.10. TCP

11/19/2015

Slow start — sequence plot

Sequence No

cwnd = 16 = data segments =

= ACKs °

= cwnd doubles every

cwnd = 8 round-trip time

[}

3

=3

[o %

n

n
LR IY

cwnd = 1 @
)
:}—0.
RTT

Time

TCP

2015.11.10.

Congestion avoidance

Easy to drive the network in saturation
but hard for the network to recover

Slow start is too aggressive

Solution: slow start + linear growth in cwnd
Initialization

o cwnd=1

o ssthresh= (e.g.) 65,535 bytes (OR arbitrarily high — RFC 2581)
After timeout

o ssthresh=cwnd /2

o cwnd=1 — slow start until cwnd == ssthresh
o for cwnd > ssthresh

= increase cwnd by one for each RTT (Additive Increase)

= in practice: cwnd = cwnd + 1 <= for each RTT
1
in segments: cwnd = cwnd + p— <= for each ACK
) MSS WERE
inbytes: W = W + =W +
cwnd w

TCP

2015.11.10.

11/19/2015

Congestion avoidance

4 loss and .
— _SS_thLeih_ timeout limit of the
| network
RTO
-
Congestion
Bl slow Avoidance
g| start
Slow
Start
time

Is (RFC 1122)

= Goa
o keep cwnd around optimal size as much as possible

n
o Congestion avoidance
increase cwnd slowly to avoid packet losses as long as possible

o Slow start
increase cwnd rapidly to reach maximum safety transfer rate as fast as

possible
max. safety: half of the rate that caused packet loss (conservative!)

2015.11.10.

TCP

Congestion avoidance — sequence plot

11/19/2015

cwnd = 10
= data segments =
= ACKs
= cwnd is increased
cwnd = 9 by 1 for each RTT
o
[J
s
Sequence No H
cwnd = 8 e
(]
[J
@
[J
[]
[d
[
[
SRTT
H
H
Time
TCP 12

2015.11.10.

Fast retransmit

= After a segment lost TCP may be slow to retransmit

= if this is the only missing segment
o it delays the whole flow transmission

o receiver has to wait for the missing segment

receiver

o if receives a segment out of order — ACK for the last inordered segment

that was received

Solution: retransmit packet without waiting for RTO!

o continues repeat this ACK until missing segment arrives

source

o when receives a duplicate ACK it means

1. the segment following the ACKed segment was delayed

Q no action needed
2. segmentwas lost
Q retransmission needed
[test
o wait for the next ACK
o 3 dup ACKs — retransmit the segment

TCP Tahoe (implemented in 4.3 BSD Tahoe, Net/1, ~1988)

2015.11.10. TCP

Fast retransmit — example

Sender Receiver
SN = 1001 A= got
L+ 1201 A = 1001
s
SN = 140 A=120
sN
1
12082
SN = 220 .{g’% 3 dup ACKs
U
= 240 -
= 2 =120
= 0
T A
530
A= 12
cu mulative ACK _
2015.11.10. TCP u

11/19/2015

Fast retransmit (TCP Tahoe) — sequence plot

=]
(=]
=]
(=]
]
m L]
o ¢ slow start
Sequence No =.
a
o
-X P fast retransmit
=) [J I
[m} [J
] °
Se———+¢ 3rddup ACK
$ RTT rd dup
'
..
Time
2015.11.10. TCP 15

Fast retransmit — TCP Tahoe

limit of the

/ network

slow start and congestion avoidance phases

a
+ fast retransmit

a

= Problem
after fast retransmit we know that congestion occured
o BUT make slow start is too conservative

o we know that consecutive packets have been received
a
Solution: two type of congestion
RTO expires — serious congestion

a

a
a

A Fast retransmit
| ssthresh (after 3 dup ACKs)
[
| / / \
Congestion Additive
2| Slow Avoidance, Increase
g| start
Slow
Start
time
= TCP Tahoe

3 dup ACKs — no serious congestion (at least 3 packets could arrive)

Tahoe is very sensitive to packet loss (1% loss rate may cause 50-75% decrease in throughput!)

16

2015.11.10. TCP

11/19/2015

Fast recovery

Goal: avoid slow start!

after receiving the third dup ACK
o ssthresh =cwnd /2

retransmit the segment (fast retransmit)
(inflating the window)

a
o cwnd = ssthresh + 3
a

if additional dup ACKs arrives
cwnd =cwnd + 1
transmit a segment if possible

o if the next ACK arrives (for new segment)

cwnd = ssthresh

Inflating the window

(inflating the window)

(deflating the window)

o dup ACK means — one packet arrived and cached at receiver
o one new packet can be sent

2015.11.10.

TCP

Fast recovery — example

transmitted
segments

fast retransmit
after 3 dup

ACKs

source is unable
to send segments
until cwnd
regains its
former value

. SND.UNA + SND.WND
|

cumulative
ACK arrives

SND.UNA

ssthresh = cwnd/2
cwnd = cwnd/2 + 3

cwnd = cwnd+1

°
c
3]
Ly

cwnd = ssthresh

cwnd = cwnd+1
at each received

cwnd = cwnd+1

(cong. avoidance)

2015.11.10.

source is transmitting

segments

| |
per RTT i dup ACK i per RTT
\ L T 1 »
E— — ime AS
stable flow linear congestion

avoidance

TCP

11/19/2015

Fast recovery (TCP Reno) — sequence plot

transmitting o
=]

segments

(if cwnd allows)\@ I = '.
@
)

=]
=]
Sequence No cwnd=9 :' fast recovery congestion avoidance
=]
=]
X " cumulative
5 S ecBooseo ACK arrives
=} [-
.= o I cwnd++ cwnd=4
[J
De—>e
3rd dup ACK
.’: RTT fast retransmit
[]
¢ cwnd=9/2+3=7

Time

2015.11.10. TCP

‘ Fast recovery — TCP Reno

Fast retransmit limit of the

—“—thief? TN revon

Congestion Avoidance
<«——— Additive Increase

©
c| Slow
% Start Multiplicative Decrease
Fast recovery
time -
= TCP Reno

implemented in 4.3 BSD Reno, Net/2, ~1990

Fast retransmit
o Fastrecovery

= Problem
o multiple losses from a single window??

Q

o Slow start

o Congestion avoidance: AIMD (Additive Increase Multiplicative Decrease)
Q

20

2015.11.10. TCP

11/19/2015

10

Summary of the algorithm (TCP Reno)

cwnd > ssthresh timeout

duplicate ACKs

fast retransmit + fast recovery

new ACK

timeout

Initialization

a
a

cwnd = 1 (segment)
ssthresh = 65,535 bytes

TCP sender sends segment: effwnd

a
a

maxwnd = min(cwnd, adwnd)
effwnd = maxwnd — (lastbytesent — lastbyteacked)

Congestion avoidance

a
a
a

cwnd = cwnd + 1 for each RTT

cwnd = cwnd + 1/cwnd for each ACK

if congestion:

= ssthresh = max(2, min(cwnd, adwnd)/2)

Slow start

a
a
a

cwnd =1
cwnd = cwnd + 1 for each ACK
if cwnd > ssthresh — congestion avoidance

Fast recovery

a
a

cwnd = ssthresh + 3

if additional dup ACKs

] cwnd =cwnd + 1

] transmit segment if effwnd > 0
if new ACK

= cwnd = ssthresh

= congestion avoidance

2015.11.10.

TCP

21

11/19/2015

11

