Halozatba kapcsolt eroforras
platformok es alkalmazasaik

Simon Csaba
TMIT
2019

Google MapReduce -> FADOOP

=l a?ajaﬁ'

What is Hadoop:

Apache top level project, open-source implementation of
frameworks for reliable, scalable, distributed computing
and data storage

Java-based framework of tools for storage and large-
scale processing of data sets on clusters of hardware
It is a flexible and highly-available architecture for large

scale computation and data processing on a network of
commodity hardware

What is Hadoop?

« Hadoop
e an open-source software framework that supports data-
intensive distributed applications, licensed under the Apache
v2 license.
* Goals / Requirements
» Abstract and facilitate the storage and processing of large
and/or rapidly growing data sets
o Structured and non-structured data
e Simple programming models
High scalability and availability
Use commodity (cheap!) hardware with little redundancy
Fault-tolerance
Move computation rather than data

Hadoop’s Developers

T4 ,
2 O TiEmEE

2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search
engine project.

Doug Cutting

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

Tl
Google Origins

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

2003 Google*

MapReduce: Simplified Data Processing on Large Clusters

2004 Jeffrey Dean and Sanjay Ghemawat
jeff@ google com. sanjay @ google com
Google, Inc.
Bigtabde: A [Fstribated Storags Systenn for Structored Data (= P (= cC H E
L
Fay Thang, Je ey Dean, Senjey Ghemaaa, Wikson O Hsich, Deerornh A Wollach
2006 Muke Burross, Deshar Chandm, Ardloew Fikes, Hokbor B Liruber
§ e el e S il oo W Bl o S prwie | 40 poeplc i

i, .

Al e el i iy sl Wi ph perlborsianee. Rusr B
proveben s ddferent reeriace than e aovoe ms. Big
Roars ol a0t & Pell relewsnal dacs oeoeke) ivine
provebes ol w il & gl dea el B sepe
Fymamee conred o el Lapea arsd lowmmad, 2w
Eomsw chareie be nesom s cie begally prvspe e o
At ey ar e in S el I ing ST Do a
deaed wargg rowe e £ i farrees Dhal dan B aiba
vimn gy Hoglsode abe-fe silgls o sunferpecicd shr

rpralie by] e e oy ssa g
Sl ket Hlaad in sionisend B meads B @ wop B
prisksbes of e screu shoussadh, ol ceremed o
e ey peegects wf Degle stomre 2ot e Tagdahds
il o ey, Cheegle Raath arcd Gecple B
= Thew spqibo e de e ey ST oo
hgtsbde. both i o o st siee B URLs s

e e e e v e el Tahme e s s —

HADOOP . Classic™

T |
Hadoop framework - the layers

- Hadoop framework consists on two main layers

> Execution engine (MapReduce)
> Distributed file system (HDFS)

MapReduce
layer

multi-node cluster

. |
Hadoop Master/Slave Architecture

- Hadoop is designed as a master-slave architecture

MapReduce

Layer

HDFS
Layer

hadoop-namenode

JobTracker

NameNode \

i

= Master node (single node)

MapReduce
Layer

..

\

HDFS
Layer

DataNode "

‘i DataNode

hadoop-datanode1 hadoop-datanode2

~— Many slave nodes

Hadoop’s Architecture: MapReduce Engine

-

Map Phase Reduce Phase

Hadoop’s MapReduce Architecture

MapReduce Engine:

e JobTracker & TaskTracker

» JobTracker splits up data into smaller tasks(“Map”) and sends it to
the TaskTracker process in each node

» TaskTracker reports back to the JobTracker node and reports on job
progress, sends data (“Reduce”) or requests new jobs

The MapReduce Limitations

<»Scalability
‘* Maximum Cluster Size — 4000 Nodes
‘* Maximum Concurrent Tasks — 40000
“*Coarse synchronization in Job Tracker
<*Single point of failure
“sFailure kills all queued and running jobs
“*Jobs need to be resubmitted by users
“*Restart is very tricky due to complex state

ADFS

Hadoop’s own filesystem

- The Hadoop Distributed File System (HDFS) is a distributed file system
designed to run on commodity hardware.

- It has many similarities with existing distributed file systems. However,
the differences from other distributed file systems are significant.

» Highly fault-tolerant and is designed to be deployed on low-cost
hardware.

= Provides high throughput access to application data and is suitable for
applications that have large data sets.

= Relaxes a few POSIX requirements to enable streaming access to file
system data.
= Part of the Apache Hadoop Core project
http://hadoop.apache.org/core/

MapReduce with HDFS

» Distributed, with some centralization

e Main nodes of cluster are where most of the computational
power and storage of the system lies

e Main nodes run TaskTracker to accept and reply to MapReduce
tasks, and also DataNode to store needed blocks closely as
possible

e Central control node runs NameNode to keep track of HDFS
directories & files, and JobTracker to dispatch compute tasks to
TaskTracker

e Written in Java, also supports Python and Ruby

- @M
HDES properties

e Hadoop Distributed Filesystem

e Tailored to needs of MapReduce

» Targeted towards many reads of filestreams

e Writes are more costly

* High degree of data replication (3x by default)
e No need for RAID on normal nodes

e Large blocksize (64MB)

e Location awareness of DataNodes in network

T
HDFS Name Node

» Stores metadata for the files, like the directory structure of a
typical FS.

» The server holding the NameNode instance is quite crucial, as
there is only one.

e Transaction log for file deletes/adds, etc. Does not use
transactions for whole blocks or file-streams, only metadata.

e Handles creation of more replica blocks when necessary after a
DataNode failure

T
HDFS Data Node

e Stores the actual data in HDFS
e Can run on any underlying filesystem (ext3/4, NTFS, etc)
e Notifies NameNode of what blocks it has

« NameNode replicates blocks 2x in local rack, 1x elsewhere

Does Hadoop require HBEE; |

e Errr, actually...

* None of these components are necessarily limited to using
HDFS

e Many other distributed file-systems with quite different
architectures work

» IF Hadoop knows which hosts are closest to the data THEN
reduces network traffic

e Many other software packages besides Hadoop's MapReduce
platform make use of HDFS

Hadoop: Fow it Worlks

Forras: M. Eltabakh, Hadoop/MapReduce Computing Paradigm

- @k
Store the data: HDFS

Block Replication

Centralized namenode
{ Namenode (Filename, numReplicas, block-ids, ...) } - Maintains metadata info about files

lusers/sameerp/data/part-0, r:2, {1,3}, ... \
rile r]2 ISI450

lusers/sameerp/data/part-1, r:3, {2.4,5}, ...

m Blocks (64 MB)

] H B] Many datanode (1000s)
’ - Store the actual data
0 4] 5 4] - Files are divided into blocks
- Each block is replicated N times
(Default = 3)

Map-Reduce Execution Enginé - Color Coun

Input blocks Produces (k, v) Shuffle & Sorting Con.sumes(k, [v])
on HDFS (- , 1) based on k ,[1,1,1,1,1,1..])

[1
o
el
" O
8

.

) B
.
)

_____________________________ Produces(k’, v")
- S (, 100) R

Map

8 C.-'

A
l..
]
»
]
[

et
;
g -8

9 Map

z
o
[=]
o
@
\ 4

2 a g

o
L - .- - ﬁ Map

- E— Map

C . s .
el ay 0% uy 0% 0y wt e
o
s
(I

Users only provide the “Map” and “Reduce” functions

Properties of MapReduce Engine

- Job Tracker is the master node (runs with the namenode)
> Receives the user’s job
> Decides on how many tasks will run (number of mappers)
= Decides on where to run each mapper (concept of locality)

Node1 Node2 Node 3

e This file has 5 Blocks < run 5 map tasks

] * Where to run thg task reading block “1”
| | o Trytoruniton Node 1 or Node 3

- @@ i
Properties of MapReduce Engine

- Task Tracker is the slave node (runs on each datanode)
= Receives the task from Job Tracker

> Runs the task until completion (either map or reduce task)
> Always in communication with the Job Tracker reporting progress

a
.
ga"

e, . O S

- s B : Reduce /\)

a2, %0, n > e ——>{Paschuh) ® e > In this example, 1 map-reduce
s = = i >

e e AKX job consists of 4 map tasks

@ = o Map éLParSe-haS}L g N

TeemEe T “wae - and 3 reduce tasks

L R vy

Key-Value Pairs

Mappers and Reducers are users’ code (provided functions)
Just need to obey the Key-Value pairs interface

Mappers:

= Consume <key, value> pairs

s Produce <key, value> pairs

Reducers:

» Consume <key, <list of values>>

s Produce <key, value>

Shuffling and Sorting:

» Hidden phase between mappers and reducers

= Groups all similar keys from all mappers, sorts and passes them to a
certain reducer in the form of <key, <list of values>>

- 2@
MapReduce Phases

Input Output
Record : Record
Record N Record
Record (llzl:f ;r:lﬁz) »Shuffle/Sort Reduce i Record
Record ’ 3 Record
Record i Record
Record]

Record Record
Record Map Task Shuffle/Sort| Record
Record (Ke; value) E 1 Reduce Record
Record 1

Record

Record]

Record

Record - Map Task *Shuffle/Sort [Reduce » Record
Record (Key, value) Record
Record =)

Deciding on what will be the key and what will be the value 2
developer’s responsibility

- 2@ i
Color Filter

Job: Select only the blue and the greencd, g,., map task will select only
Input blocks Produces (k, v)

on HDFS @D the blue or green colors
m = 80, ’
mCy Bp® . mTTTTTTTmm

CER -.m:: —> Map nite to HDIBS! p,1to001 ' |+ No need for reduce phase

5 Write to HDFES! :
Map g + Partooo2 !

a7 | ' . .
S | < That’s the output file, it
= wop —LUTOHDES! 00 has 4 parts on probably 4

different machines

> ., —AutetoHDE iPartooo4§

RADOQOP YARN

I |
Hadoop proposal: YARN

“*Yet Another Resource Negotiator

“*YARN Application Resource Negotiator(Recursive
Acronym)

“*Remedies the scalability shortcomings of “classic”
MapReduce

“+Is more of a general purpose framework of which classic
mapreduce is one application.

YARN

<+ Split up the two major responsibilities of the JobTracker/TaskTracker into separate
entities

» JobTracker
% global Resource Manager - Cluster resource management
% per application Application Master — doing job scheduling and monitoring,

negotiating the resource containers from the Scheduler, tracking their status and
monitoring for progress
» TaskTracker
% new per-node slave Node Manager (NM) - responsible for launching the
applications’ containers, monitoring their resource usage (cpu, memory, disk,
network) and reporting to the Resource Manager
% (a per-application Container running on a NodeManager)
< YARN maintains compatibility with existing MapReduce applications and users

Hadoop MapReduce Classic

+ JobTracker

— Manages cluster resources and job scheduling
* TaskTracker

— Per-node agent .
~ Managetasks @0 1

MapReduce Status ————»
Job Submission ===---p

YARN — Architectural Overview

Vo)+ Scalability - Clusters of
- 6,000-10,000 machines

— Each machine with 16
cores, 48G/96G RAM,
24TB/36TB disks

— 100,000+ concurrent tasks
— 10,000 concurrent jobs

MapReduce Status ———#
Job Submission ===« -
Node Status s i
Resource Request .-...-.... >

Comparing YARN with MapReduce

Criteria YARN MapReduce
.Real—tlrr.le, batch, Silo & batch
Type of processing interactive processing with
processing with . :
) . single engine
multiple engines
Cluster resource Excellent due to Average due to fixed
. central resource
optimization Map & Reduce slots
management
MapReduce & Non
Suitable for — MapReduce Only. Ma.pReduce
o applications
applications
Managing cluster Done by YARN Done by JobTracker
resource

T |
YARN advantage over MapReduce

“» Support for programming paradigms other than MapReduce
(Multi tenancy)

“*Tez — Generic framework to run a complex DAG
*HBase on YARN (HOYA)

“Compute engine (e.g., Machine Learning): Spark
¢+ Graph processing: Giraph

“+Real-time processing: Apache Storm

“+Enabled by allowing the use of paradigm-specific application
master

“*Run all on the same Hadoop cluster!

Hadoop components

Bl Applications
{query, analytics, reporting, statistics)

Orchestration Framework
EDY

Connector(s) |

Data Storage Framework Data Processing Framework
(HDFS) (MapReduce)

JvVvmMm

Operating System {(Linux)

————— —

Dell PE-R, PE-C Servers

Backup & Recovery

Deployment

Security

=

Management

Hadoop Subprojects - Summary

- Pi
- %igh—level language for data analysis
- HBase
= Table storage for semi-structured data
- Zookeeper
= Coordinating distributed applications
- Hive
s SQL-like Query language and Metastore
- Mahout
= Machine learning

|
Tez on YARN

“» Hindi for speed

< Provides a general-purpose, highly customizable framework that
creates simplifies data-processing tasks across both small scale (low-
latency) and large-scale (high throughput) workloads in Hadoop.

“» Generalizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex DAG

<+ Enables Apache Hive, Apache Pig and Cascading can meet
requirements for human-interactive response times and extreme
throughput at petabyte scale

|
Tez on YARN

< Original MapReduce requires disk I/O after each stage
“* A series of MapReduce jobs following each other would result in lots

of I/0
» Tez eliminates these intermediate steps, increasing the speed and
lowering the resource usage S—

Subash D’Souza, Hadoop 2.0 and YARN Pig/Hive - MR Pig/Hive - Tez

e
Tez on YARN

“*Performance gains over Mapreduce
“*Eliminates replicated write barrier between successive
computations
“»Eliminates job launch overhead of workflow jobs
“*Eliminates extra stage of map reads in every workflow
job
“*Eliminates queue and resource contention suffered by

workflow jobs that are started after a predecessor job
completes

- 2@ “j
HBase on YARN(HOYA)

*» Be able to create on-demand HBase clusters easily -by and or in
apps
“+With different versions of HBase potentially (for testing etc.)
“* Be able to configure different HBase instances differently

“*For example, different configs for read /write workload
instances

*» Better isolation
“+Run arbitrary co-processors in user’s private cluster
¢ User will own the data that the hbase daemons create

|
HBase on YARN(HOYA)

“* MR jobs should find it simple to create (transient) HBase clusters

“+For Map-side joins where table data is all in HBase, for
example

“» Elasticity of clusters for analytic / batch workload processing
“*Stop / Suspend / Resume clusters as needed
“*Expand / shrink clusters as needed

“* Be able to utilize cluster resources better
“*Run MR jobs while maintaining HBase’s low latency SLAs

SPARIK

- @@
Apache Spark |

APACHE
* An Apache Foundation open source project. Not a Spork

product.
- Standalone generic BigData computational framework

Both batch and streaming mode
* An in-memory compute engine that works with data searksat Stf;‘;a,{,'.‘n-g MLlib GraphX
* Not a data store ‘

- Enables highly iterative analysis on large volumes Spark Core
of data at scale '

< Unified environment for data scientists, developers —
and data engineers Standalone

« Radically simplifies process of developing intelligent

apps fueled by data
- Can be combined with Hadoop
But can work without Hadoop, too: e.g., Kubernetes

Hadoop YARN Mesos

Relationship with Apache Mesos

T B Wi ec L .
he two Projects go back a long time!

2008: Mesos started as UC Berkeley research proiect

A

#/\/\esosCon

/ ; NORTH AMERICA

Key reasons for Spark

High Performance

Productive

Leverages existing
investments

Improves with age

=
=

L I

In-memory architecture greatly reduces disk I/0
Anywhere from 20-100x faster for common tasks

Concise and expressive syntax, especially compared
to prior approaches (up to 5x less code)

Single programming model across a range of use
cases and steps in data lifecycle

Integrated with common programming
languages — Java, Python, Scala

New tools continually reduce skill barrier for access
(e.g. SQL for analysts)

Large and growing community of contributors
continuously improve full analytics stack and extend
capabilities

S. Pandey: Spark as a Service, IBM Cloud Data Services

Spark components

 Resilient Distributed Dataset (RDD)
e The primary data abstraction and the core of Spark
e Resilient and distributed collection of records spread over many partitions
e Shuffling: redistributing data across partitions
 Stage
» Physical unit of execution

_____ Action =submits job§»|

Spark terminology

Driver Process that contains the SparkContext
Executor [Frocess that executes one or more Spark tasks
Master Process that manages applications across the cluster

Worker Frocess that manages executors on a particular node

I |
Spark / cluster mode deployment

————————————————————————————

| Cluster
I Executor JVM :
E JVM heap |
Driver JVM :
o EA[EA(EANN
spark_submit : JVM heap . :
I
Client JVM ' || Scheduler !
- >
|| 2RRe Executor JVM !
1 Context i
JVM heap

Static Spark on Kubernetes

e A Single pod is created for Spark Master

e For all workers, there will pod for each worker

e All the pods runs custom built spark image

e These pods are connected using kubernetes networking
abstractions

This creates a static spark cluster on kubernetes

e As the spark is not aware it's not running on kubernetes
, it doesn’t recognise the limits put on kubernetes pods

e For ex: In kubernetes we can define pod to have 1 GB
RAM, but we may end up configure spark worker to
have 10 GB memory

e This mismatch in resource definition makes it tedious in
keeping both in sync

e The same applies for CPU and Disk bounds also

Kubernetes is the new YA

e When spark is deployed on YARN, spark treats YARN
as a container management system
e Spark requests the containers from YARN with defined

resources
e Once it acquires the containers, it builds a RPC based

communication between containers to run driver and
executors

e Spark can scale automatically by releasing and aquiring
containers

e From Spark 2.3, spark supports kubernetes as new
cluster backend

e |t adds to existing list of YARN, Mesos and standalone
backend

e This is a native integration, where no need of static
cluster is need to built before hand

e Works very similar to how spark works yarn

or Spar

spark-submit

@. APl Server

I

APACHE

Sp Qf’(ku bernetes

Spark on K8S

Spark Core Kubernetes Scheduler Backend i
configuration H :

Kubernetes Cluster

new executors

\—U-

remove executors

\
\

+ Resource Requests
« Authnz

« Communication with K8s

Runs Spark Drivers/Executors
Runs Shuffle Service
Runs Additional Components

for Spark jobs

- @@
Spark on K8s + HDFS

- No YARN, no data locality?

Kubernetes example e _Read ffileA
N
Driver Pod Readd mILB Executor Pod 1 \ Executor Pod 2
b 8 bl v |lv =
10.0.0.2 10.0.0.3| .* || *.l 10.0.1.2
node A _ 2 node B
196.0.0.5 196.0.0.6 S

- @@ i
Spark on K8s + HDFS

- K8s master provides an API to match executor and datanode host IDs

(IP, label)
‘/——\Read!ﬁIeB
Y
Driver :meecutor Pod 1 \ Executor Pod 2
& > & T‘.
A .
10.0.0.2 - 10.0.0.3 - 10.0.1.2
: ffileA ' ffileB
ode A { node B _
196.0.0.5 196.0.0.6

- @@
The effect of data locality

without data locality fix with data locality fix
- duration: 25 minutes - duration: 10 minutes

_ /w’\;
| |
: //\/\ /\ \/\/M /’, |
J VU O\ L

D DskReadBytes

e Kubernetes Custom Controller is an extension to

SparkPl example over Ku

kubernetes API to defined and create custom resources

in Kubernetes
e Spark uses customer controller to create spark driver
which interns responsible for creating worker pods

Kubernetes cluster

Kubernetes master

I |: :
1
B[] LEE s UL or
1 AN I '_..;..:_
EXECUlOr Do walon vent x -
| A arve DO

o I : . |
[1] 0o 0o
&
spark executlors pods

Apache Spark running natively in a Kubernetes cluster

Pi szamitasa BigData klaszterben

n
1429 \
+—IDEAL
\ —=—COMPUTED
* \‘____,._—7 - ™
1000 10000 20000 0000

Pi szamitasa BigData klaszterben

1111111

— =

* ® o /Ic

—e—I|DEAL

—a—-COMPUTED

RealTime data processing: BatcH VS. gtreaming

- Apache Storm

- Spark Streaming

- (message queuing;:
» (RPC: gRPC)

L -y
0 \
- g -
input data batches of batches of
stream . Spark input data Spark processed data
' Streaming 7 Engine DDE:>
Kafka)

