
SPARK - Gepi tanulas alkalmazasa
In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

Out[3]:

[u"(u'He was decent.', 28, u'1388535896', u't1_ceeekl1', u't1_ceegaq
j', u't3_1u3kq1')"]

Out[5]:

[(u'he was decent', 28)]

import json
import re
import string

df=sc.textFile("jokecomments2014.txt").repartition(8)

df.take(1)

dfALMA=df.map(lambda x: eval(x))

def stringok(x):
 s=x
 re.sub(r'\W+', '', s)
 s=s.replace('\n'," ")
 exclude = set(string.punctuation)
 s2 = ''.join(ch for ch in s if ch not in exclude)
 s2=s2.lower()
 s2=s2.strip()
 return s2

dfALMA2=dfALMA.map(lambda x: (stringok(x[0]),x[1]))
dfALMA2.take(1)

In [6]:

In [7]:

In [8]:

In [13]:

UJ RESZ INNEN JON

Out[6]:

[(u'he', (0, 28, 1)),
 (u'was', (0, 28, 1)),
 (u'decent', (0, 28, 1)),
 (u'well', (0, 12, 1)),
 (u'he', (0, 12, 1))]

Out[7]:

[(u'unimaginative', (0, 19, 1)),
 (u'httpwwwredditcomrnewscomments2da3bqrobinwilliamsfounddeadcjnjrb1',
 (0, 66, 1)),
 (u'httpswwwyoutubecomwatchvvarlfj0w6ua', (0, 11, 1)),
 (u'nun\u201d', (0, 14, 1)),
 (u'nun', (-119, 12645, 165))]

Out[13]:

[[u'unimaginative', 0, 19, 1, 0.05],
 [u'httpwwwredditcomrnewscomments2da3bqrobinwilliamsfounddeadcjnjrb1',
 0,
 66,
 1,
 0.014925373134328358],
 [u'httpswwwyoutubecomwatchvvarlfj0w6ua', 0, 11, 1, 0.0833333333333333
3],
 [u'nun\u201d', 0, 14, 1, 0.06666666666666667]]

def szo_es_score(x):
 result=[]
 for i in x[0].split(" "):
 if x[1]<0:
 result.append((i,(x[1],0,1)))
 else:
 result.append((i,(0,x[1],1)))
 return result
dfKORTE=dfALMA2.flatMap(szo_es_score)
dfKORTE.take(5)

dfCITROM=dfKORTE.reduceByKey(lambda x,y: (x[0]+y[0],x[1]+y[1],x[2]+y[2]))\
.filter(lambda x: x[0]!=u'')
dfCITROM.take(5)

dfEPER=dfCITROM.map(lambda x: [x[0],x[1][0],x[1][1],x[1][2]])

dfGORIDINNYE=dfEPER.map(lambda x: x + [(float(x[1]+1))/float(x[2]+1)])
dfGORIDINNYE.take(4)

In [14]:

In [15]:

In [16]:

In [17]:

('Kivalogatottak:', 152)

('Kivalogatottak:', 113)

Levalogatjuk a szavakat, amik a legerosebb pozitivak
Ujdonsag: collect() - mindet leszedo take

ww1=dfGORIDINNYE.filter(lambda x: x[3]>300)\
.filter(lambda x: x[4]>-0.03)\
.map(lambda x: x[0])\
.collect()

print("Kivalogatottak:",len(ww1))

#Ugyanugy a legjobban negativba hajlokat

ww2=dfGORIDINNYE.filter(lambda x: x[3]>300)\
.filter(lambda x: x[4]<-0.04)\
.map(lambda x: x[0])\
.collect()

print("Kivalogatottak:",len(ww2))

#A ket nagy csapat osszerakasa
ww=ww1+ww2

Gepi tanulasnal ugynevezett tanulo pontok kellenek
from pyspark.mllib.regression import LabeledPoint
from numpy import array

In [19]:

Out[19]:

[LabeledPoint(1.0, [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]),
 LabeledPoint(1.0, [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]),
 LabeledPoint(1.0, [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

Egy fuggveny, ami egy commenthez osszeszedi mely szavak szerepeltek
a ww litaban.
def genvector(x,ww):
 line=x.split(" ")
 r=[]
 for w in ww:
 if w in line:
 r.append(1)
 else:
 r.append(0)
 return r

dfMATRIX=dfALMA2.map(\
lambda x:\
LabeledPoint(1, genvector(x[0],ww)) if x[1]>0 else LabeledPoint(0, genvector(x[0],ww

dfMATRIX.take(3)

In [20]:

In [21]:

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])]

Classifier trained in 13.135 seconds

Out[21]:

[(-0.94527570216630341, u'edit'),
 (-0.88446508791418155, u'saying'),
 (-0.88044693654892192, u'funny'),
 (-0.75388657096097955, u'woman'),
 (-0.62436417116453169, u'sense'),
 (-0.61609291336989491, u'husband'),
 (-0.61373905505114112, u'post'),
 (-0.58062213154820186, u'which'),
 (-0.5527822557230424, u'being'),
 (-0.55217610941151174, u'person'),
 (-0.53628543307765486, u'having'),
 (-0.52013770132361481, u'women'),
 (-0.45799822389046319, u'asks'),
 (-0.45647752165076116, u'whole'),
 (-0.43163711283631251, u'without'),
 (-0.42513596524980612, u'comment'),
 (-0.41227898696170229, u'people'),
 (-0.41109511305873908, u'punchline'),

LOGISZTIKUS REGRESSZIO MODSZERE

from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from time import time

SZETSZEDJUK A MODELT TANITORA ES TESZTRE
(trainingData, testData) = dfMATRIX.randomSplit([0.8, 0.2])

Build the model
t0 = time()
logit_model = LogisticRegressionWithLBFGS.train(trainingData)

tt = time() - t0

print "Classifier trained in {} seconds".format(round(tt,3))

KIDERUL, HOGY MELYIK SZO A MATRIXBAN MILYEN HATASU
sorted(zip(list(logit_model.weights),ww))

In [36]:

In [37]:

In [38]:

In [43]:

In []:

(4.568814992904663, 'sec - ACC:', 0.7808924485125858)

ARANYOK
('JO komment volt, JO kommentnek tippeltuk:', 0.743707093821510
3)
('JO komment volt, ROSSZ kommentnek tippeltuk:', 0.1491990846681922
3)
('ROSSZ komment volt, JO kommentnek tippeltuk:', 0.0699084668192219
7)
('ROSSZ komment volt, ROSSZ kommentnek tippeltuk:', 0.0371853546910755
1)

#Mire mit mond a modellunk a test halmazban
labels_and_preds = testData.map(lambda p: (p.label, logit_model.predict(p.features)))

#Kiszamitjuk a pontossagot
t0 = time()
test_accuracy = labels_and_preds.filter(lambda (v, p): v == p).count() / float(labels_and_preds
tt = time() - t0
print(tt,"sec - ACC:",test_accuracy)

#RESZLETESEBBEN

print("ARANYOK")
a = labels_and_preds.filter(lambda (v, p): v == 1 and p == 1).count() / float(labels_and_preds
print("JO komment volt, JO kommentnek tippeltuk:",a)
a = labels_and_preds.filter(lambda (v, p): v == 1 and p == 0).count() / float(labels_and_preds
print("JO komment volt, ROSSZ kommentnek tippeltuk:",a)

a = labels_and_preds.filter(lambda (v, p): v == 0 and p == 1).count() / float(labels_and_preds
print("ROSSZ komment volt, JO kommentnek tippeltuk:",a)
a = labels_and_preds.filter(lambda (v, p): v == 0 and p == 0).count() / float(labels_and_preds
print("ROSSZ komment volt, ROSSZ kommentnek tippeltuk:",a)

