
Hálózatba kapcsolt erőforrás

platformok és alkalmazásaik
Simon Csaba

TMIT

2017

BitTorrent

BitTorrent

• Written by Bram Cohen (in Python) in 2001

• “Pull-based” “swarming” approach
▫ Each file split into smaller pieces

▫ Nodes request desired pieces from neighbors
 As opposed to parents pushing data that they receive

▫ Pieces not downloaded in sequential order

• Encourages contribution by all nodes

3

What is BitTorrent?
 Efficient content distribution system using file

swarming. Does not perform all the functions of a typical

p2p system, like searching.

 The throughput increases with the number of down

loaders via the efficient use of network bandwidth

4

How does a node starts the download?

www.bittorrent.com

Peer

1

• An „index file”
popeye.mp4.torrent
hosted at a (well-
known) webserver

5

5

Peer

Tracker

2

www.bittorrent.com

How does a node starts the download?

• An „index file”
popeye.mp4.torrent
hosted at a (well-
known) webserver

• The .torrent has address
of tracker for file

6

6

Peer

Tracker 3

www.bittorrent.com

Swar

m

How does a node starts the download?

• An „index file”
popeye.mp4.torrent hosted
at a (well-known)
webserver

• The .torrent has address of
tracker for file

• The tracker, which runs on
a webserver as well, keeps
track of all peers
downloading file

7

7

File sharing

To share a file or group of files, the initiator first creates a
.torrent file, a small file that contains

 Metadata about the files to be shared
 SHA-1 hashes of each piece in file - for reliability

 “files” – allows download of multiple files

 Information (e.g., URL) about the tracker, the computer
 that coordinates the file distribution.

Downloaders first obtain a .torrent file, and then connect
to the specified tracker, which tells them from which
other peers to download the pieces of the file.

8

How it works

The file to be distributed is split up into pieces and an

SHA-1 hash is calculated for each piece

9

BT Components

The peers first obtain a metadata file for each object
The metadata contains:

 The SHA-1 hashes of all pieces
 A mapping of the pieces to files
 Piece size
 Length of the file
 A tracker reference

10

BT Components

The tracker is a central server keeping a list of all peers
participating in the swarm

 A swarm is the set of peers that are participating in
distributing the same files
 A peer joins a swarm by asking the tracker for a
peer list and connects to those peers.

11

BitTorrent naming conventions
Seeder = a peer that provides the complete file.

Initial seeder = a peer that provides the initial copy.

Initial seeder

Seeder

Leecher

One who is downloading
(not a derogatory term)

Leecher

12

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

{} {1,2,3}

Downloader C

{} {1,2,3}

{1,2,3,4}

{1,2,3,5}

{1,2,3,4,5}

13

Basic Idea

As a leecher downloads pieces of the file, replicas of the pieces are
created. More downloads mean more replicas available

As soon as a leecher has a complete piece, it can potentially share it
with other downloaders. Eventually each leecher becomes a seeder by
obtaining all the pieces, and assembles the file.

Each leacher
▫ Reports to its peers what pieces it has

▫ Starts exchanging these pieces with them

• Torrent file on web server has SHA1 hashes of all the pieces

• Peers don’t report that they have a piece until they’ve checked its hash
▫ Could have used erasure codes

14

Operation

15

Download in progress

16

Download in progress

17

Pipelining

When transferring data over TCP, always have

several requests pending at once (typically 5), to

avoid a delay between pieces being sent.

Every time a piece or a sub-piece arrives, a new

request is sent out.

18

Piece Selection

• The order in which pieces are selected by different
peers is critical for good performance

• If an inefficient policy is used, then peers may end up
in a situation where each has all identical set of easily
available pieces, and none of the missing ones.

• If the original seed is prematurely taken down, then
the file cannot be completely downloaded! What are
“good policies?”

19

Piece Selection

Small overlap is good Large overlap is bad

-- wastes bandwidth

20

Piece selection

• Strict Priority

• Rarest First
▫ General rule

• Random First Piece
▫ Special case, at the beginning

• Endgame Mode
▫ Special case

21

Random First Piece

• Initially, a peer has nothing to trade

• Important to get a complete piece ASAP

• Select a random piece of the file and download it

22

Rarest Piece First

• Determine the pieces that are most rare among your

peers, and download those first.
▫ Increases diversity in the pieces downloaded

 avoids case where a node and each of its peers have
exactly the same pieces; increases throughput

▫ Increases likelihood all pieces still available even if
original seed leaves before any one node has
downloaded entire file

23

Endgame Mode

Near the end, missing pieces are requested from
every peer containing them.
This ensures that a download is not prevented

from completion due to a single peer with a slow
transfer rate.
Some bandwidth is wasted, but in practice, this is

not too much.

24

BT: internal mechanism

• Built-in incentive mechanism (where all the

magic happens):

▫ Choking Algorithm

▫ Optimistic Unchoking

25

Choking

• Choking is a temporary refusal to upload. It is one of

BT’s most powerful idea to deal with free riders

(those who only download but never upload).

• Tit-for-tat strategy is based on game-theoretic

concepts.

26

Choking

Reasons for choking:

– Avoid free riders

– Network congestion

A good choking algorithm caps the number of

simultaneous uploads for good TCP performance.

27

More on Choking

 Peers try out unused connections once in a while to
find out if they might be better than the current ones
(optimistic unchoking).

28

Optimistic unchoking

• A BT peer has a single “optimistic unchoke” to
which it uploads regardless of the current
download rate from it. This peer rotates every 30s

• Reasons:

▫ To discover currently unused connections that are
better than the ones being used

▫ To provide minimal service to new peers

29

Anti-snubbing

• A peer is said to be snubbed if each of its peers
chokes it

• To handle this, snubbed peer stops uploading to
its peers

Optimistic unchoking done more often

▫ Hope is that will discover a new peer that will
upload to us

30

Upload-Only mode

• Once download is complete, a peer can only
upload. The question is, which nodes to upload
to?

• Policy: Upload to those with the best upload rate.
This ensures that pieces get replicated faster, and
new seeders are created fast

31

.torrent
• url of the tracker
• Pieces <hash1,hash2,….hashn>
• Piece length

▫ pieces maps to a string whose length is a multiple of 20. It is
to be subdivided into strings of length 20, each of which is the
SHA1 hash of the piece at the corresponding index.

• Name
• Length
• Files

▫ Path
▫ length

32

Bencode

• All data passed in BT is bencoded (BEE –
Encoded).

• This is a representation convention used to
avoid interoperability problems.

33

Tracker

• Peer cache

▫ IP, port, peer id

• State information

▫ Completed

▫ Downloading

• Returns random list

34

35

35

Peer > Tracker:

GET requests has following keys
• info_hash – hash of the .torrent.
• peer_id – My unique ID.
• My IP / Port
• uploaded / Downloaded
• left – Can not be calculated from Downloaded,

because of errors / restart.
• event - Why I do the GET.

37

GET events

• Reasons for calling the GET:

▫ Started

▫ Completed

▫ Stopped

▫ Empty - done at regular intervals

38

Tracker > Peer :

tracker GET responses
• failure

• interval – next time to GET

• List of peers

39

Peer <> Peer communication

Actual packet structure

40

Peers protocol

• operates over TCP

• Peer connections are symmetrical

• Refers to pieces by index from .torrent

• Connections contain : choked and interested

41

Peer messages
• Handshake
• Keep alive (0 size, every 2 minutes)
• 0 - choke
• 1 - unchoke
• 2 - interested
• 3 - not interested
• 4 - have
• 5 - bitfield
• 6 - request
• 7 - piece
• 8 - cancel

42

Change connection state

• 'choke', 'unchoke', 'interested', and 'not
interested' have no payload.

• Data transfer takes place:

▫ one side is interested, other side is not choking

▫ state must be kept up to date at all times

• This is a precondition for upload / download –
REQUEST / PIECE

43

BITFIELD

• Only ever sent as the first message.

• bitfield - a bit for each piece –

▫ 1 – Have

▫ 0 – Don’t have

• May skip if has 0 pieces.

44

HAVE

• Single number, the index which that downloader
just completed and checked the hash of.

45

REQUEST

• Contain - index, begin, and length

• Length is generally a power of two unless it gets
truncated by the end of the file.

46

Why BitTorrent took off
• Better performance through “pull-based”

transfer
▫ Slow nodes don’t bog down other nodes

• Allows uploading from hosts that have
downloaded parts of a file
▫ In common with other end-host based multicast

schemes

47

Why BitTorrent took off
• Practical Reasons (perhaps more important!)

▫ Working implementation (Bram Cohen) with simple
well-defined interfaces for plugging in new content

▫ Many recent competitors got sued / shut down
 Napster, Kazaa

▫ Doesn’t do “search” per se. Users use well-known,
trusted sources to locate content
 Avoids the pollution problem, where garbage is passed off as

authentic content

48

Pros and cons of BitTorrent

• Pros

▫ Proficient in utilizing partially downloaded files

▫ Discourages “freeloading”

 By rewarding fastest uploaders

▫ Encourages diversity through “rarest-first”

 Extends lifetime of swarm

• Works well for “hot content”

49

Pros and cons of BitTorrent

• Cons

▫ Assumes all interested peers active at same time;
performance deteriorates if swarm “cools off”

▫ Even worse: no trackers for obscure content

50

Pros and cons of BitTorrent

• Dependence on centralized tracker: pro/con?

▫  Single point of failure: New nodes can’t enter
swarm if tracker goes down

▫ Lack of a search feature

  Prevents pollution attacks

  Users need to resort to out-of-band search: well
known torrent-hosting sites / plain old web-search

51

“Trackerless” BitTorrent

• To be more precise, “BitTorrent without a
centralized-tracker”

• E.g.: Azureus
• Uses a Distributed Hash Table (Kademlia DHT)
• Tracker run by a normal end-host (not a web-server

anymore)
▫ The original seeder could itself be the tracker
▫ Or have a node in the DHT randomly picked to act as the

tracker

52

Dynamics of a torrent

meta file workload

0 100 200
100

101

102

103

C
C

D
F

 o
f

p
ee

r

ar
ri

v
al

------ raw data

------ linear fit

100

102

104

tracker site workload

0 20 40

------ raw data

------ linear fit

Peer arrivals: decrease with time exponentially

t

arrivals ofnumber




Peer arrival rate

53

trace

model

0 200 400 600
100

102

104

to
rr

en
t

li
fe

sp
an

 (
h
o

u
r)

torrents

Torrent Population and Lifespan

trace

model

 100 101 102 103
100

102

104

to
rr

en
t

p
o

p
u

la
ti

o
n

rank of torrents

Most torrents are small (avg 102) Most torrents are short live (avg 8

days)

54

Performance Stability

model
trace

time (hour) av
g

 d
o

w
n

lo
ad

 s
p

ee
d
 (

b
y

te
/s

ec
)

 50 100 150 200 0

5

10

15 104

2

4

6

8

10

 0 50 100 150 200

torrents

101

101

103

105

downloader
seed

download speed

Snapshot of torrents at time t

#
 o

f
p
ee

rs

Evolution over time

Only stable when torrent is large

Fluctuate significantly after peak

time

Larger torrents have higher and

more stable performance

av
g

 d
o

w
n

lo
ad

 s
p

ee
d

(b
y
te

/s
ec

)

55

Why is (studying) BitTorrent

important?

(From CacheLogic, 2004)

56

Why is (studying) BitTorrent

important?

(From CacheLogic, 2004)

(From PaloAltoNetworks.com, 2013)

57

Why is (studying) BitTorrent important?

• BitTorrent consumes significant amount of internet
traffic today
▫ In 2004, BitTorrent accounted for 30% of all internet

traffic (Total P2P was 60%), according to CacheLogic
▫ Slightly lower share in 2005 (possibly because of legal

action), but still significant
▫ BT always used for legal software (linux iso)

distribution too
▫ Recently: legal media downloads (Fox)

58

Questions about BT

• What is the effect of bandwidth constraints?

• Is the Rarest First policy really necessary?

• Must nodes perform seeding after downloading is complete?

• How serious is the Last Piece Problem?

• Does the incentive mechanism affect the performance much?

59

Trackerless torrents

 BitTorrent also supports "trackerless" torrents,

featuring a DHT implementation that allows the

client to download torrents that have been

created without using a BitTorrent tracker.

60

BitTorrent links

•Hivatalos oldal
▫ http://bittorrent.com

•FAQ

▫ http://www.dessent.net/btfaq/#what

•Torrent-ek

▫ http://www.suprnova.org/
 2004 végén bezárták

▫ http://isohunt.com/
 159.000 tracker, 6.8 millió aktív torrent, 161 millió fájl, 12.2 PB adat,

25.8 millió peer

61

Pirate parties
Pirate Party is a label adopted by political parties in different
countries.
Pirate parties support
• civil rights,
• direct democracy and participation in government,
• reform of copyright and patent law,
• free sharing of knowledge (open content),
• information privacy,
• transparency,
• freedom of information,
• anti-corruption
• Internet neutrality
• 7.1% at the Swedish EU elections

62

http://upload.wikimedia.org/wikipedia/commons/6/6c/Piratpartiet.svg

The Pirate Bay
•http://thepiratebay.org

•Az egyik legnépszerűbb weboldal a neten
▫ 2003 novemberében indult

•2006. május 31-én a svéd rendőrség lefoglalja a szervereket, 3 napig offline a
weboldal

•A per
▫ 2009. április 17-én a szolgáltatás működtetőit (Peter Sunde,

Fredrik Neij, Gottfrid Svartholm és Carl Lundström) 1 év
börtönre és 30 millió SEK (~ 700 millió HUF) büntetésre
ítélik

▫ Fellebbezés, a bírót elfogultsággal vádolják

•> 25 millió peer (2008 nov.)
•4 millió regisztrált (2009 dec.) felhasználó

▫ A letöltéshez nem kell regisztrálni, csak a kommentekhez
 és a feltöltéshez

63

