

jDHTUQ for peer-to-peer
DHT networking

(This document is under construction, but contains

information that can be useful for understanding the
functioning and use of JDHTUQ)

Index

1. Introduction...3
2. The Aplication jDHTUQ...5

2.1. Installation ..6
2.2. Set of components ...6
2.3. Executing aplication ..7
2.3.1. Data structure mode..7
2.3.2. Network mode ..8

3. Using Graphics User Interface... 10
3.1. Data Structure GUI.. 11

3.1.1. Routing and storage.. 11
3.1.2. Specifing length key... 11
3.1.3. Creating nodes ... 12
3.1.4. Deleting nodes ... 13
3.1.5. Putting resources .. 13
3.1.6. Getting resources.. 14
3.1.7. Hashing utilities ... 16

3.2. Network GUI .. 18
4. Lookup Services API... 19

4.1 How to implements ... 20
4.2 How to use .. 20

5. Chord Like Lookup Service... 23
5.1 Properties File ... 24

5.1.1 chord.xml ... 24
5.1.2 communication.xml.. 25

6. Storage Service API .. 26
6.1 How to implements ... 27
6.2 How to use .. 27

7. DHash Like Storage Service.. 30
7.1 Properties File ... 31

7.1.1 dhash.xml... 31
7.1.2 communication.xml.. 32

3

1. Introduction

1

4

jDHTUQ is a peer-to-peer DHT system based in Chord algorithm, but built to
generalize the implementation of peer-to-peer DHT system. It have two fundamental
services, put and get of resource.

jDHTUQ is enfoqued to:

 Layered Architecture
 Lower coupling
 Easily adaptable to any routing algorithm
 Easily adaptable to any resources management
 Independent communication module configurable
 Implementation of two forms of communication, one in data struture and another

on the network
 Xml properties files
 Xml-based communication
 One implementation of Chord algorithm
 One implementation of a resources management (DHash)
 Gui-oriented education

The project is conformed by a communication module (contains log4j from apache),
interface of storage services, interface for lookup services and two implementations,
Chord like lookup service and DHash like storage service.

The communication module is designed for be customizable and reusable. It have two
general implementations, communication on a data structure (exist graphics user
interface where you see the lookup and transfers) and on a network (implements for two
branch, protocol UDP and TCP).

The interface for storage services and lookup services defines all services necessary for
implementation of resources management and overlays network (like Chord, Kademlia,
Pastry, Biseroy, etc).

Chord layer is an implementation of overlay network and exposes all services from the
interface for lookup services. DHash layer is an implementation of resources
management and exposes all services from interface for storage services. This is made
for that components are loosely coupled. For this, is possible to implement any overlay
network that implements the interface lookup services and use the same layer of
resources management.

5

2. The Aplication jDHTUQ

2

6

2.1. Installation

Download from https://sourceforge.net/projects/jdhtuq/files/ jDHTUQ-1.0.0.zip and
unzip, execute jDHTUQ-1.0.0.jar or (if operative system is windows) jDHTUQ-
1.0.0.bat for to show console and to see the logs.

2.2. Set of components

The jDHTUQ-1.0.0.zip contains a GUI and libraries (Figure 1):

Figure 1: jDHTUQ files

The folder lib contains all libraries need for well function of jDHTUQ. This libraries
are: chord-1.0.0.jar, dhash-1.0.0.jar, storageService-1.0.0.jar, lookupService-1.0.0.jar,
communication-1.0.0.jar and log4j-1.2.15.jar (Figure 2).

Figure 2: Libraries files

Some libraries have configuration files, the following are the libraries with their own
configuration files:

Library Configuration File

chord_properties/chord.xml chord-1.0.0.jar chord_properties/communication.xml
dhash_properties/dhash.xml dhash-1.0.0.jar dhash_properties/communication.xml

log4j-1.2.15.jar communication_properties/logger.xml

The properties for each file will be covered later.

7

2.3. Executing aplication

Exist two modes for execute aplication: Data structure and network. Both modes depend
on which classes handle the communication. This is defined through of configuration
files.

The communication was use in Chord layer for lookup and for storage service in the
DHash layer. Both configurations MUST be in the same mode.

Before of execute the aplication, you MUST setup the communication mode. The
configurations files are dhash_properties/communication.xml and
chord_properties/communication.xml.

2.3.1. Data structure mode

Next we will show the correct configurations for data structure mode (Figure 3):

Figure 3: Configuration for data structure mode

The core of the configuration is in the line 7, the property instance.class MUST to be
co.edu.uniquindio.utils.communication.transfer.structure.CommunicationManagerStructure for
both, for DHash and Chord. The data structre mode not required params.

Next you can execute the application from jDHTUQ-1.0.0.jar or jDHTUQ-1.0.0.bat
(only on windows system), when you do this must be display the following window:

Figure 4: Main window

Selected Structure and must display the main window for data structure mode:

8

Figure 5: Main window in data structre mode

2.3.2. Network mode

For network mode exist two class to communication management, the first on protocol
UDP and the second on protocol TCP. Commonly protocol UDP is use for lookup
services and protocol TCP for storage services.

The classes for communication management in network mode are:

 co.edu.uniquindio.utils.communication.transfer.network.CommunicationManagerTCP
 co.edu.uniquindio.utils.communication.transfer.network.CommunicationManagerUDP

Both communications use protocol UDP Multicast for discovery and join of nodes.

The Figure 6 shown the correct configurations for Chord layer in
chord_properties/communication.xml and the Figure 7 for DHash layer in
dhash_properties/communication.xml. The parameters in both configurations are required and it
are customizables.

9

Figure 6: Configuration for network mode in Chord layer.

Figure 7: : Configuration for network mode in DHash layer.

Only one node must to be executed in the same machine. Verifies that are enable the
communication on protocol TCP, UDP and Multicast UDP in this machine.

Next execute the application from jDHTUQ-1.0.0.jar or jDHTUQ-1.0.0.bat (only on
windows system), must display the window in Figure 4.

Selected Network and must display the main window for network mode:

Figure 8: Main window in network mode

10

3. Using Graphics User
Interface

3

11

3.1. Data Structure GUI

The data structure GUI is composed by two main components, routing and storage, and
hashing utilities.

3.1.1. Routing and storage

Next we will show the window components:

Figure 9: Data structure window and its components.

3.1.2. Specifing length key

The length key is the length of number hashing in BITS. Represents the size of fingers
table (for lookup service Chord) and therefore impact of stabilization time of network.
To configure the length key use the spinner in Hashing Configurations Figure 9 (brown
color).

Note: For hashing is used SHA-1. If is lower length key to 160 bits, NOT guaranteed
that all hashing generated will be diferents.

12

3.1.3. Creating nodes

There are four ways to create nodes: Create Node, Create N Nodes and Create F
Nodes. This operations are in Nodes Manager Figure 9 (green color).

Create Node creates a node with the specified name. If not name is specified, the node
name is generated automatically like number incremental. If you want, you can
simulates behavior in the network using internet address for node name.

Create N Node creates a determinate nodes number. Must set a number greater that 0.
The nodes names is generated automatically like number incremental.

Create F Node creates a determinate number based in text file with nodes names
separated by ENTER.

All nodes created are shown like list in Nodes Manager Figure 9 (green color) linking
node number and name, also are shown in Ring Panel Figure 9 (blue color) like a point
in circle with node number (Figure 10). The order of list is with respect to hashing.

Figure 10: Creates 23 nodes by text file

You can select any node in Ring Panel Figure 9 (blue color) or in Nodes Manager
Figure 9 (green color). In Hashing Configurations Figure 9 (brown color) show the
hashing (green color) of selected node. You can configure how many digits displayed
using spinner (next of hashing).

13

3.1.4. Deleting nodes

For deleting nodes, you can selected any and click in Delete Node in the Nodes
Manager Figure 9 (green color).

3.1.5. Putting resources

For putting resource, select button Put in the Services Panel Figure 9 (red color). It
displays file chooser, select the file to put and select Put. In the Ring Panel is displayed
in green color the routing jumps for lookup and blue color the resource transfer (Figure
11).

a) Select file 3.jpg and click in Put.

14

b) Displayed jumps routing for lookup (green) and transfer (blue)

Figure 11: Putting resource

The resources are stored in dhash/node_name. In this folder, you must find in root all
resources put that will correspond to the node. To see this folder, selects the node and
click in open button.

3.1.6. Getting resources

For getting resource, select button Get in the Services Panel Figure 9 (red color). It
displays dialog, sets resource name (file name, sensitive case) and select Get. In the
Ring Panel is displayed in red color the routing jumps for lookup and blue color the
resource transfer (Figure 12).

15

a) Writes file name (case sensitive) and select Aceptar

b) Displayed jumps routing for lookup (red) and transfer (blue)

Figure 12: Getting resource

16

The resources obtained from get are stored into dhash/node_name/gets.

3.1.7. Hashing utilities

To see hashing utilities select the arrow or drag the part referred of color red (
Figure 13), must sees like Figure 14.

Figure 13: How to see hashing utilities

17

Figure 14: Hashing utilities

You can generate hashing in 3 ways:

 Generate Hashing: Generates hashing from a String sets in the input.
 Select a File: Generates hashing of file name.
 Select a Folder: Generates hashing from a folder. Finds all files into this folder

and generates hashing of file name.

Figure 15: Generated hashing from folder

18

You can modified length key for generated hashing based in this. Also you can
modified the amount of digits displayed with the spinner aside of Select a Folder
button.

For save the contents in table, selects Save button. The format of file generated is:

name1_:_hashing1
name2_:_hashing2
name3_:_hashing3

...

...
nameN_:_hashingN

For example: lang-1025.dll_:_05243.

3.2. Network GUI

The network GUI is like show in Figure 8. This works in the same form like data
structure GUI. The only difference is the exit button, this button is used for exit the node
correctly.

Note: You MUST used the exit button when you wants that the node exit correctly.

19

4. Lookup Services API

4

20

The lookupServices.jar contains all services required for to make lookups in a peer-to-
peer network. Represents routing layer.

4.1 How to implements

For to implement Lookup Services you must to make following:

I. Create a class that implements the interface OverlayNode. This class must to
implement all required for lookup. (Required)

Example:

II. Create a class that extend from OverlayNodeFactory. This class must to
implement all required for to create nodes OverlayNode. (Required)

Example:

III. Verify that the class co.edu.uniquindio.utils.hashing.Key implements the
methods appropriate comparison, if not, create a class that extend from Key and
overriden this methods. (Optional)

IV. Verify that the implementation for hashing

(co.edu.uniquindio.utils.hashing.HashingGeneratorImp) is useful. If not, create a
class that extend from co.edu.uniquindio.utils.hashing.HashingGenerator.
(Optional)

4.2 How to use

For to use Lookup Services observes the following code:

21

Figure 16: Code for to use Lookup Service

Line 19: Initialized hashing generator. The parameter is the class name of the
implementation of HashingGenerator (Optional)

Line 24: Create an instance of overlay node factory. The parameter is the class name of
the implementation of OverlayNodeFactory.

Line 29-31: Create 3 overlay nodes.

Line 36: Waiting for the network stabilizes (Only if the overlay network requires to
ensure success in the search) (Optional)

Line 40: Create an instance of Key to search.

22

Line 46: Lookup of Key. Return the node that is responsible for the key.

23

5. Chord Like Lookup
Service

5

24

Chord is a peer-to-peer system described in the paper: A Scalable peer-to-peer Lookup
Protocol for Internet Applications. This is an implementation of Lookup Service API
and it is reusable for components that have access across Lookup Service API.

5.1 Properties File

Chord module contains two properties file in XML, chord.xml and communication.xml.

5.1.1 chord.xml

chord.xml is based in the following XSD named chord.xsd:

Figure 17: XSD for chord.xml

25

The XSD (Figure 17) describes all terms on properties.

XML example:

Figure 18: Properties file chord.xml

The following describes the properties:

Name Description
time.stableRing Stabilizing time in miliseconds of

ChordNode. Time interval for invoke
stabilized, fixFingers, checkPredecessor
and fixSuccessors.

successorList.amount Size of successor list.

5.1.2 communication.xml

This properties file is described after. It is used for the communication module
configuration.

26

6. Storage Service API

6

27

The storageServices.jar contains all services required for to storage resources in a peer-
to-peer network. Represents storage layer.

6.1 How to implements

For to implement Storage Services you must to make following:

I. Create a class that implements the interface StorageNode. This class must to
implement all required for puts and gets of resources. (Required)

Example:

II. Create a class that extend from StorageNodeFactory. This class must to
implement all required for to create nodes StorageNode. (Required)

Example:

III. Verify that the implementation for digest
(co.edu.uniquindio.utils.hashing.DigestGeneratorImp) is useful. If not, create a
class that extend from co.edu.uniquindio.utils.hashing.DigestGenerator.
(Optional)

IV. Verify that the implementations resources

(co.edu.uniquindio.storage.resource.FileResource and
co.edu.uniquindio.storage.resource.ObjectResource) is useful. If not, create a
class that extend from co.edu.uniquindio.storage.resource.Resource. (Opcional)

6.2 How to use

For to use Lookup Services observes the following code:

28

Figure 19: Code for to use Storage Service

Line 22: Initialized digest generator. The parameter is the class name of the
implementation of DigestGenerator (Optional)

Line 27: Create an instance of storage node factory. The parameter is the class name of
the implementation of StorageNodeFactory (Required)

Line 32-34: Create 3 storage nodes (Required)

Line 39: Waiting for the network stabilizes (Only if the overlay network requires to
ensure success in the search) (Optional)

29

Line 43-44: Create an instance of FileResource and ObjectResource (Optional, can
implement another type of resource)

Line 48-49: Putting the resources (Optional)

Line 53: Getting the resource named ‘image.jpg’ (Optional)

30

7. DHash Like Storage
Service

7

31

DHash is an implementation of Storage Service. Managements all onto resources
(persist, remove, storage, mapped).

7.1 Properties File

DHash module contains two properties file in XML, dhash.xml and communication.xml.

7.1.1 dhash.xml

dhash.xml is based in the following XSD named dhash.xsd:

Figure 20: XSD from dhash.xml

The XSD (Figure 20) describes all terms on properties.

XML example:

32

Figure 21: Properties file dhash.xml

The following describes the properties:

Name Description
overlay.factoryClass Class name that creates overlay nodes.

Have to be a OverlayNodeFactory
overlay.observerClass Class name that is notifies by Overlay

layer when is needs. (For Chord layer, this
is notified when predecessor changes and
ReAssignObserver reassigned all resource
to new predecessor). This class have to be
an Observer

replication.amount Amount replication nodes. Note: The
amount replication nodes real is calculate
by min(replication.amount,
successorList.length). The successor list is
based in Overlay layer.

7.1.2 communication.xml

This properties file is described after. It is used for the communication module
configuration.

