

Cloud Networking (VITMMA02)

Dr. Markosz Maliosz

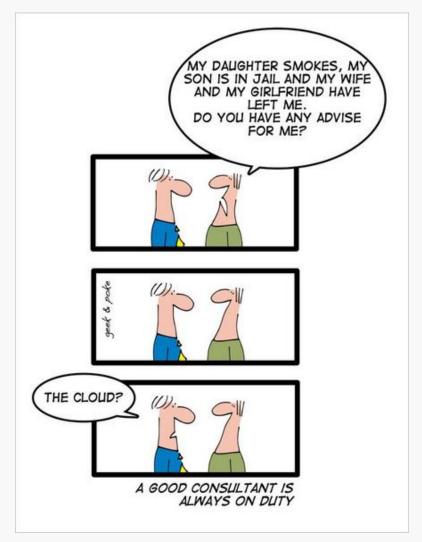
Department of Telecommunications and Media Informatics Faculty of Electrical Engineering and Informatics Budapest University of Technology and Economics

Definition of Cloud

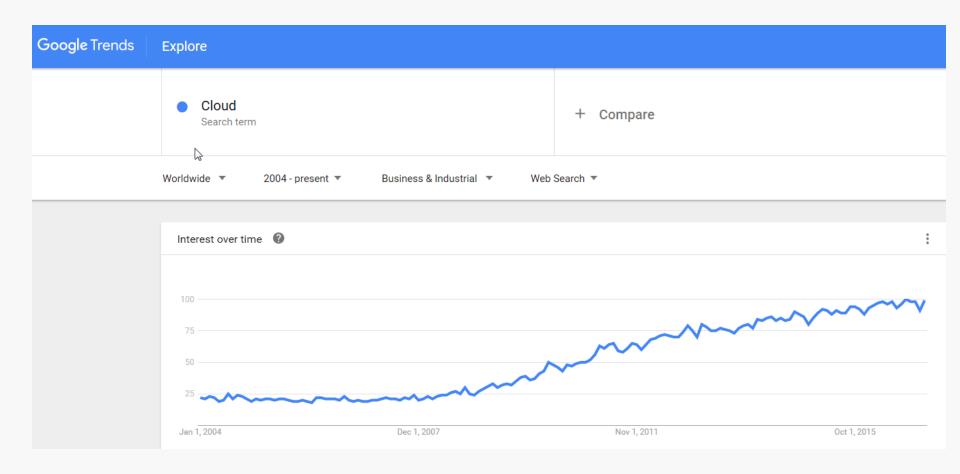
- » Many characterizations, for example:
 - » using services and applications any time, from anywhere
 - » using information technology with usage based costs
 - » an overall virtualization model from the infrastructure to the applications
 - » using dynamically scalable virtual resources as a service over the Internet
- » Definition of National Institute of Standards and Technology (NIST) /2011. szept./
 - » "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."
 - » 5 key properties
- 3 service models

4 deployment models

- » on-demand selfservice
- » broad network access
- » resource pooling
- » rapid elasticity
- » measured service


- » Software as a Service
- » Platform as a Service
- » Infrastructure as a Service

- » Private cloud
- » Community cloud
- » Public cloud
- » Hybrid cloud


Is it a buzzword to solve everything?

- "With the cloud, individuals and small businesses can snap their fingers and instantly set up enterprise-class services." -Roy Stephan, 2011
- Cloud computing is really a no-brainer for any start-up because it allows you to test your business plan very quickly for little money." -Brad Jefferson, Animoto CEO, 2009.
- » Larry Ellison, CEO of Oracle
 - » in 2009: "What do you mean by "cloud computing"?...All the cloud is is computers on a network.
 Our industry is so bizarre. They just change a term and they think they've invented technology....You can't just come up with a [slogan] like "Let's call that 'cloud." [But] it sure beats innovation.
 - » in 2014: We think these three product areas — database, cloud applications, and engineered systems — will drive Oracle's growth in calendar 2014.

Google search statistics

Forrás: Google Trends

Cloud Applications

Cloud Application Usage By Company Size

	Small	Medium	Large
Business productivity	61%	58%	71%
Email	52%	64%	63%
Analytics/BI	45%	56%	59%
Collaboration	43%	55%	58%
Virtual desktop	41%	54%	57%
Web presence	43%	48%	53%
CRM	34%	49%	51%
HR management	33%	45%	50%
Help desk	30%	40%	44%
Expense management	27%	46%	33%
ERP	24%	34%	44%
Financial management	27%	29%	32%
Call Center	26%	33%	36%

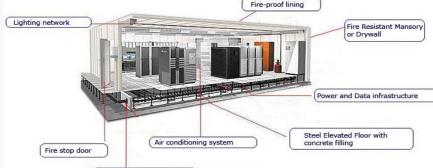
CompTIA

Source: CompTIA's 5'0 Annual Trends in Cloud Computing | Base: 366 U.S. firms using cloud computing

Looking Ahead

- » Basis of one of the Top 10 2017 technology trends (by Gartner)
 - » Mesh App and Service Architecture

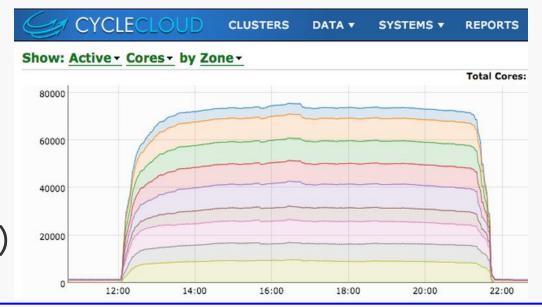
(The mesh refers to the dynamic connection of people, processes, things and services supporting intelligent digital ecosystems.)


The mesh app and service architecture (MASA) is a multichannel solution architecture that leverages <u>cloud</u> and <u>serverless computing</u>, <u>containers</u> and <u>microservices</u> as well as APIs and events to deliver modular, flexible and dynamic solutions.

Forrás: http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/

Introduction

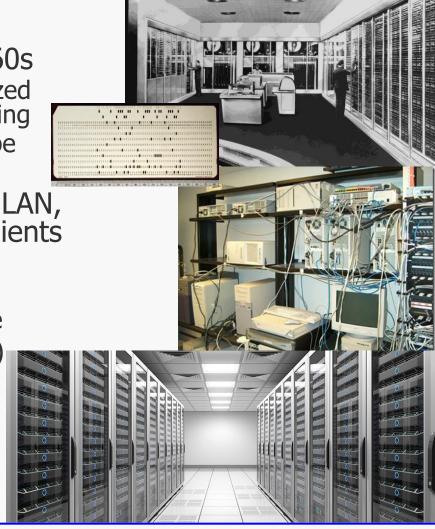
- » A clear trend: centralizing computing resources in big datacenters
 - » similarly to power-plants
- » Requirements
 - » commodity hardware: relatively cheap and obtainable
 - » place, building
 - » electrical power, cooling
 - » network
- » Cloud concept
 - » efficiency in cost and productivity
 - » remote network access
- » Re-used functions from legacy technologies
 - » parallel processing
 - » distributed systems
 - » usage-based pricing for computing (pay as you go)
- » Possible tasks for a cloud engineer
 - » regular checking and development of cloud infrastructure
 - » development, deployment and management of cloud applications
 - » creation, orchestration and operation of cloud services


Properties of a cloud service

- » It is not owned by You
- » Details of service operation is hidden from the cloud user
 - » no maintenance tasks
 - » You cannot see it ©
- » Usage-based billing (optionally free)
- » Dynamically scales according to the requirements
 - » scalable, elastic

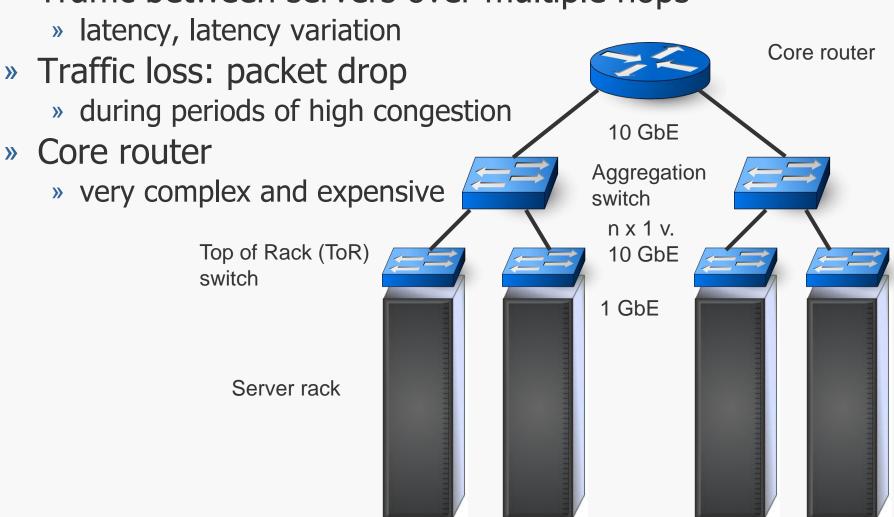
Advantages

- » Quick server(cluster) creation
- » E.g. Amazon Web Services
 - » a fun cloud run: 70,980 cores on AWS for \$5,593.94 (http://www.zdnet.com/article/a-fun-cloud-run-70980-cores-on-aws-for-5593-94/)
 - » from 0 to 50 000 CPU cores: 23 min
 - » ∼ 10 hours runtime
 - » 729 TeraFLOPS cluster
 - » \sim 63. supercomp.
 - » analysis and simulations (MatLab)

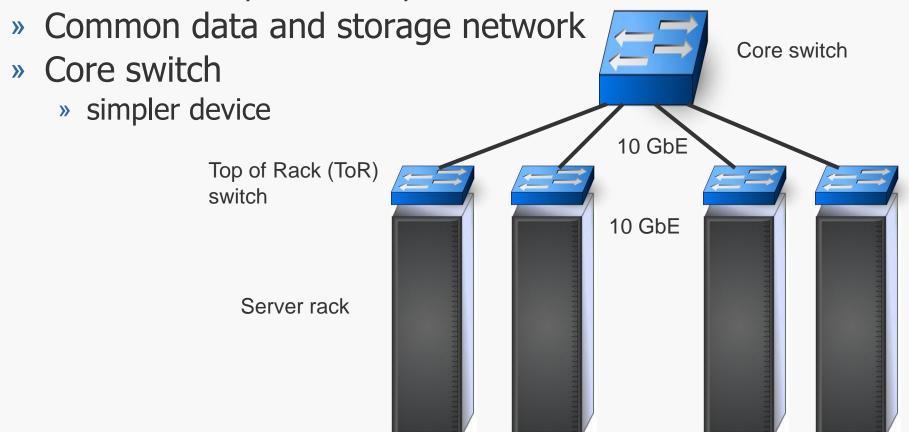


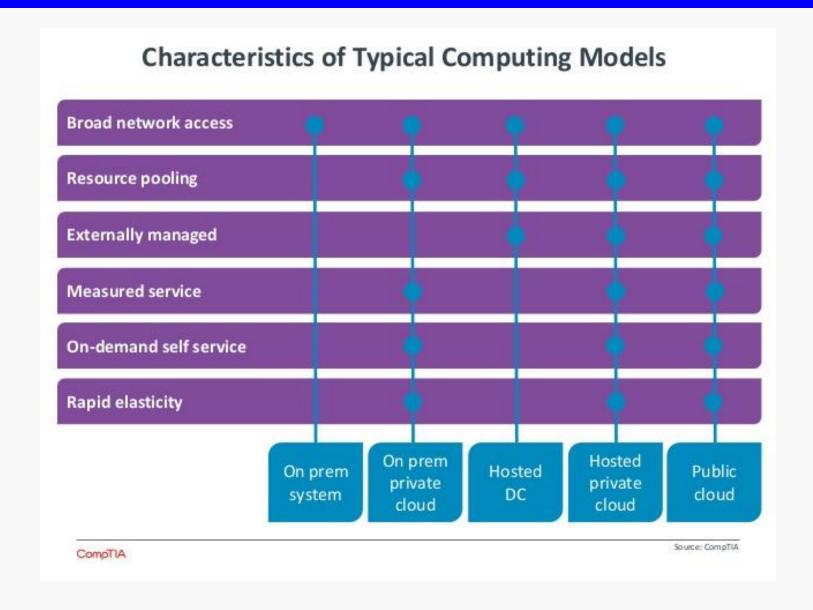
Generations of Technologies

» Or: what is new in cloud systems?


- » Data Center Evolution
 - » mainframe era: ~ from the 1960s
 - » 1 mainframe computer: centralized compute and storage, time sharing
 - » punch card, printer, later teletype
 - » thin client
 - » minicomputers connected with LAN, later servers + LAN connects clients too: from 1980s
 - » terminals and servers
 - » distributed compute and storage
 - » enterprise data centers (1990s)
 - » servers in racks
 - » cloud data centers
 - » commodity hardware
 - » horizontal scaling (scale out)

Enterprise Data Center


» Traffic between servers over multiple hops



Cloud Data Center

- » Traffic between servers over few hops
 - » flat(ter) network topology
 - » lower latency and latency variation

Driving Forces

- » Technology
 - » web services and service oriented architecture (SOA)
 - » low server utilization ⇒ virtualization
 - » PCs, servers: 10%-50%
 - » storage: 50%
 - » high speed networks
- » Economies of scale: bulk of devices lower cost
 - » CPU
 - » servers
 - » storage
- » costs
 - » electrical power
 - » cooling
 - » network access
- » environment-friendly, a.k.a green
 - » consolidation of workloads to avoid idle servers
 - » concentrated energy consumption
- » considered as the first milestone: 2006 opening the access to Amazon web services for outside developers
- » outsourcing processes and information using cloud resources

Similar Concepts

- » Cluster computing
 - » similar (or identical) computers
 - » in the same place, connected by LAN
 - » operating as powerful supercomputer
- » Grid computing
 - » independent, usually different computers
 - » even at different physical locations
 - » operating as a distributed system
- » Cloud computing
 - » similar (or identical) computers
 - » usually at different physical locations
 - » resources provided as services

Comparison of Similar Concepts

Cluster

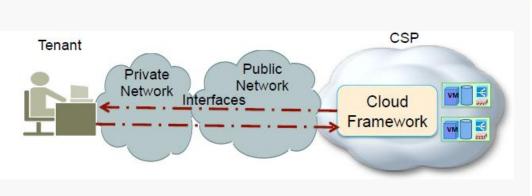
- tightly coupled, identical systems (HW and OS)
- » centralized task management and scheduling
- » dedicated low latency and high speed network
- » for solving a specific task

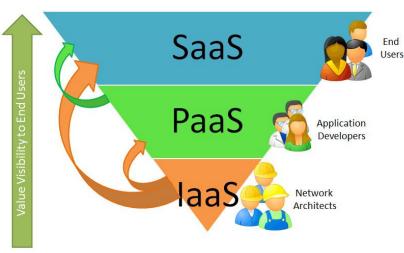
Grid

- » loosely coupled, different systems (HW and OS)
- autonomous components with own resource management, distributed control
- » a large task is divided among the components
- » powerful computers
- » connected over the Interneten

Cloud

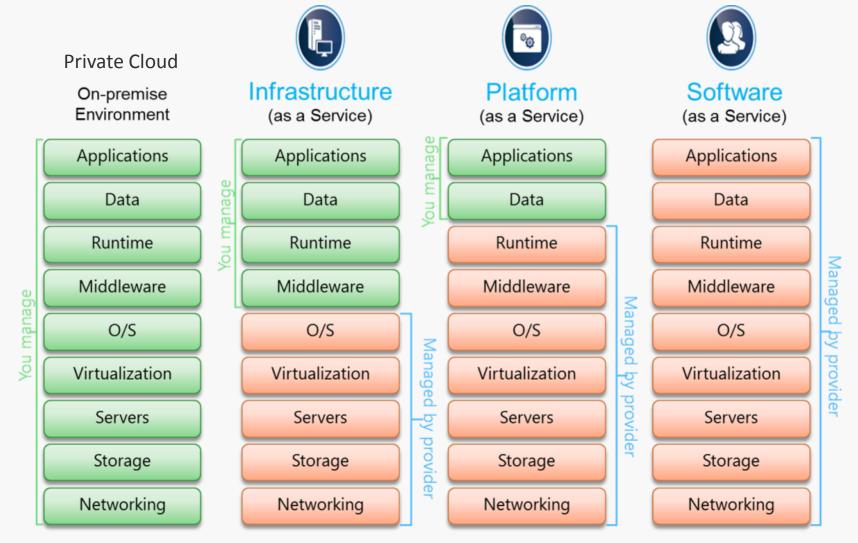
- » identical or different systems
- independent components, resources are managed by a hypervisor (virtual machine manager)
- numerous different applications running in the same time
- » dedicated low latency and high speed network


Cisco Global Cloud Networking Survey 2012


- » applications and services
 - » email and web services
 - » virtual desktop
 - » collaboration tools
 - » storage
- » migration to cloud is getting more and more accepted
 - » cost savings
 - » flexibility
 - » less operational tasks

Roles

- » Cloud Service Provider CSP
- » Cloud end-user, tenant, consumer
- » Cloud (networking) designer/engineer/architect
- » Cloud application designer/engineer/architect
- » Cloud administrator, operator



Forrás: https://jaymanalotoibm.wordpress.com/2013/11/03/delivering-ibm-tririga-from-the-cloud/

Responsibilities

Source: https://www.simple-talk.com/cloud/cloud-development/a-comprehensive-introduction-to-cloud-computing/

IaaS

- » Infrastructure aaS: "Hardware" as a Service
- » Managed environment for existing apllications and services
- » Components
 - » server (physical or virtual) compute resource
 - » storage: disk drive
 - » network + network devices: firewall, load balancer, etc.⇒ network architect
- » Providers: e.g. Amazon EC2, S3; Rackspace, Microsoft Azure, Google Compute Engine, etc.

PaaS

- » Services
 - » "solution stack": developer, test and runtime environment
 - » OS, developer tools, databases, application servers, webservers all-in-one
- » Access via API (App. Programming Interface)
- » For cloud application developers
 - » full development cycle: source code repository and control, compile, build, test, etc.
- » Built on IaaS
- » Providers: e.g. Microsof Azure PaaS, Google App Engine, Red Hat OpenShift, Cloud Foundry, Heroku
- » typically not portable between different PaaS providers

SaaS

- » Software application as a Service
 - » a complete solution, product
 - » usually business applications
 - » e-mail, calendar, CRM, office suite, project management, helpdesk, etc.
 - » software licensing modell, subscription fee
- » SaaS provider maintains hardware and software
 - » reducing IT operating costs
- » Only few customization options

Public and Private Clouds

» Public

- » shared infrastructure, public access
- » running on devices owned by a provider
- » perceived as unlimited resources
- » accessible via the Internet

» Private

- » dedicated to an organization, company
- » dedicated ownership of devices
- » flexible, but limited resources
- » not necessarily connected to the Internet

Our Focus

- » IaaS
 - » OpenStack
- » Network
 - » no cloud without network