
Slide subtitle

Agilis Hálózati
szolgáltatás-
fejlesztés –
Network service
development in
agile way

VITMMA01

2017-02-05

1

Agilis hálózati szolgálatásfejlesztés

›Adamis Gusztáv leader of the subject – IE345

adamis@tmit.bme.hu

›Csöndes Tibor Ericsson

csondes@tmit.bme.hu

›Kovács Gábor – IL106a

kovacsg@tmit.bme.hu

Presenters

2

2017-02-05

2

Agilis hálózati szolgálatásfejlesztés

Követelmények

› Zárthelyi: 2018. május 2.

› Csoportmunka
– 2 feladat - 2 csoport

– Folyamatos értékelés; 3 sprint

– Az értékelésnél elsősorban nem a kódminőséget vesszük figyelembe,
hanem azt, hogy a tanult módszereket mennyire használjátok

› Aláírás megszerzése: ZH + Csoportmunka mindegyike legalább 2

› Pótlás:
– Pótzh (május 9. + pótlási héten – csak az egyik vehető igénybe)

– Csoportmunka – nem pótolható

› Megajánlott jegy: ZH + Csoportmunka átlaga >= 4

5

2016-03-04

5

Agilis hálózati szolgálatásfejlesztés

© Ericsson AB 2014

Időbeosztás

› Előadás – szerdánként 8:30-10:00 QBF08

› Gyakorlat – páratlan heteken pénteken

8:30-10:00 QBF11

› A valóságban nem ilyen merev

– Csapatok megalakulása, feladatok ismertetése

– 3 sprint: tervezés, demó, értékelés

– ZH, PótZH

› Órabeosztás és fóliák: http://www.tmit.bme.hu/agilis-

h%C3%A1l%C3%B3zati-

szolg%C3%A1ltat%C3%A1sfejleszt%C3%A9s-2018

6

2016-03-04

6

Agilis hálózati szolgálatásfejlesztés

© Ericsson AB 2014

References

Foundations of Software Testing,
Dorothy Graham, Erik van Veenendaal,

Isabel Evans, Rex Black

The Art of Agile Development,
James Shore & Shane Warden

Foundation Level Extension Syllabus,
Agile Tester, 2014, International Software

Testing Qualification Board (ISTQB)

7

http://www.istqb.org/

2017-02-05

7

Agilis hálózati szolgálatásfejlesztés

Slide subtitle

Lean & Agile
Development

Tibor Csöndes, Honorary Associate Professor

csondes@tmit.bme.hu

2017-02-05

8

Agilis hálózati szolgálatásfejlesztés

The problem

9

9

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Software development has been changed

Need to follow fast changes requested by the customer

Most software development is a chaotic activity, often
characterized by the phrase "code and fix"

Requirement engineering getting more and more important!

Introduction

10

2017-02-05

10

Agilis hálózati szolgálatásfejlesztés

CHANGE FROM THIS...
Defined process control

11

There are two types of process control: “defined” and “empirical”.

A defined process tells you exactly what to do, which artifacts you have to

produce, who you’re supposed to talk with and when...

Defined processes work when you know exactly what you are building and

you know exactly what inputs are required to build it.

If you have to produce the same thing day in day out, a defined process might

work.

The typical example is an assembly line.

(However, please note that even assembly lines tend not to use defined

process these days).

11

Agilis hálózati szolgálatásfejlesztés 2017-02-05

... TO THIS
R&D-based process

12

Empirical processes have an “inspect and

adapt” approach.

You continuously “inspect” your

problems, and “adapt” the process by

consequence.

Empirical processes work best when you

work in an environment that changes,

and you need constant feedback.

Agile and Scrum assume that building

software is inherently an empirical

process:

12

Agilis hálózati szolgálatásfejlesztés 2017-02-05

we are building a unique product

one time only;

we can’t specify the end result

exactly;

we don’t know exactly what will

be required to build it.

Think of the difference between

designing the Honda Civic (an empirical

process) and mass producing the Honda

Civic (a defined process).

2017-02-05

12

Agilis hálózati szolgálatásfejlesztés

1970s

• Structured programming since 1969

1980s

• Structured systems analysis and design method (SSADM) from 1980
onwards

• Information Requirement Analysis/Soft systems methodology

1990s

• Object-oriented programming (OOP) developed in the early 1960s, and
became a dominant programming approach during the mid-1990s

• Rapid application development (RAD), since 1991

• Scrum, since 1995

• Extreme programming (XP), since 1999

2000s

• Agile Unified Process (AUP) maintained since 2005 by Scott Ambler

Software
Development Process

13

2017-02-05

13

Agilis hálózati szolgálatásfejlesztés

What speed can look like

“New application from concept

to production: 2 months“

“Every IT system fully

regression-tested by the end of

every iteration“

“Every IT system built & fully

tested at least twice a day“

“An incident is fully resolved

within 24h and the long-term

improvement for addressing the

root-causes handled within a

week.“

“All testing of integration

contracts is fully automated.“

“Development & test

environments delivered within

30 minutes from initial order.“

“A new car can be produced

20 hours after receiving the

customer order..“

“A new fully automated stock

trading strategy can be

implemented every week.“

“A stock trade can be cleared

in seconds.“

14

2017-02-05

14

Agilis hálózati szolgálatásfejlesztés

Rapid software
development

• Businesses operate in a fast-changing
requirement and it is practically impossible to
produce a set of stable software requirements

• Software has to evolve quickly to reflect
changing business needs.

Rapid development
and delivery is now

often the most
important

requirement for
software systems

• Specification, design and implementation are
interleaved

• System is developed as a series of versions with
stakeholders involved in version evaluation

• User interfaces are often developed using an
IDE and graphical toolset.

Rapid software
development

15

2017-02-05

15

Agilis hálózati szolgálatásfejlesztés

Software Development
Life Cycle (SDLC) Model

There are various software development approaches defined
and designed which are used/employed during development
process of software, these approaches are also referred as
“Software Development Process Models”

• Waterfall model

• V-model

• Incremental model

• Iterative model

• etc.

Each process model follows a particular life cycle in order to
ensure success in process of software development.

16

2017-02-05

16

Agilis hálózati szolgálatásfejlesztés

Software development
life cycle model phases

There are following six phases in every
Software development life cycle model:

• Requirement gathering and analysis

• Design

• Implementation or coding

• Testing

• Deployment

• Maintenance

17

2017-02-05

17

Agilis hálózati szolgálatásfejlesztés

Agilis hálózati szolgálatásfejlesztés 2017-02-05

18

The Waterfall
Process
› The traditional development process: Sequential design!

System

Requirements
Software

Requirements

Analysis

Program

Design

Coding

Testing

Operations

18

It’s only in testing that your design is tested against reality. At this point you

always learn something about your design (usually that it is wrong!), and that

tells you something about your requirements (ditto!)

Waterfall model

The Waterfall Model was first Process Model to be introduced. It is also
referred to as a linear-sequential life cycle model.

It is very simple to understand and use.

In a waterfall model, each phase must be completed fully before the next
phase can begin.

This type of model is basically used for the for the project which is small
and there are no uncertain requirements.

At the end of each phase, a review takes place to determine if the project is
on the right path and whether or not to continue or discard the project.

In this model the testing starts only after the development is complete. In
waterfall model phases do not overlap.

19

2017-02-05

19

Agilis hálózati szolgálatásfejlesztés

Advantages of waterfall model:

• This model is simple and easy to understand and use.

• It is easy to manage due to the rigidity of the model – each phase has
specific deliverables and a review process.

• In this model phases are processed and completed one at a time. Phases
do not overlap.

• Waterfall model works well for smaller projects where requirements are very
well understood.

Disadvantages of waterfall model:

• Once an application is in the testing stage, it is very difficult to go back and
change something that was not well-thought out in the concept stage.

• No working software is produced until late during the life cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• Not suitable for the projects where requirements are at a moderate to high
risk of changing.

Waterfall model

20

2017-02-05

20

Agilis hálózati szolgálatásfejlesztés

21

Where Does Waterfall
Work Well?

Organizations where requirements don’t change

• Stable requirements leads to stable design…

• Stable design leads to “no surprise” implementation

Extremely high-reliability systems (product or custom projects), where functions are very well
understood and no changes in requirements during a project are desired

Who has requirements like this?

• NASA

Embedded products with hardware constraints that cannot be easily changed

Complex projects (product or custom) where parts of design & coding are outsourced, off-
shored, or done in multiple sites, AND there are weak mechanisms to synchronize and manage
distributed teams

21

Agilis hálózati szolgálatásfejlesztés 2017-02-05

V-model
(Verification and Validation)

The V-model is an
extension of the
waterfall model.

Show the
relationships between
development phases
and test phases

Time and project
completeness vs.
level of abstraction

22

22

Agilis hálózati szolgálatásfejlesztés 2017-02-05

V-model means Verification and Validation model

Just like the waterfall model, the V-Shaped life cycle
is a sequential path of execution of processes.

Each phase must be completed before the next
phase begins.

Testing of the product is planned in parallel with a
corresponding phase of development.

V-model

23

2017-02-05

23

Agilis hálózati szolgálatásfejlesztés

Advantages of V-model:

• Simple and easy to use.

• Testing activities like planning, test designing happens well before
coding. This saves a lot of time. Hence higher chance of success over
the waterfall model.

• Proactive defect tracking – that is defects are found at early stage.

• Avoids the downward flow of the defects.

• Works well for small projects where requirements are easily understood.

Disadvantages of V-model:

• Very rigid and least flexible.

• Software is developed during the implementation phase, so no early
prototypes of the software are produced.

• If any changes happen in midway, then the test documents along with
requirement documents has to be updated.

V-model

24

2017-02-05

24

Agilis hálózati szolgálatásfejlesztés

Incremental model

The whole requirement is divided into various builds. Multiple development
cycles take place here, making the life cycle a “multi-waterfall” cycle.

Cycles are divided up into smaller, more easily managed modules.

Each module passes through the requirements, design, implementation and
testing phases.

A working version of software is produced during the first module, so you
have working software early on during the software life cycle.

Each subsequent release of the module adds function to the previous
release.

The process continues till the complete system is achieved.

25

2017-02-05

25

Agilis hálózati szolgálatásfejlesztés

Incremental model

26

2017-02-05

26

Agilis hálózati szolgálatásfejlesztés

Incremental model

Advantages of Incremental model:

• Generates working software quickly and early during the software life cycle.

• This model is more flexible – less costly to change scope and requirements.

• It is easier to test and debug during a smaller iteration.

• In this model customer can respond to each built.

• Lowers initial delivery cost.

• Easier to manage risk because risky pieces are identified and handled
during it’d iteration.

Disadvantages of Incremental model:

• Needs good planning and design.

• Needs a clear and complete definition of the whole system before it can be
broken down and built incrementally.

• Total cost is higher than waterfall.

27

2017-02-05

27

Agilis hálózati szolgálatásfejlesztés

When to use the
Incremental model
This model can be used when the requirements of the complete
system are clearly defined and understood.

Major requirements must be defined; however, some details can evolve
with time.

There is a need to get a product to the market early.

A new technology is being used

Resources with needed skill set are not available

There are some high risk features and goals.

28

2017-02-05

28

Agilis hálózati szolgálatásfejlesztés

Agile Model

Type of Incremental model

Software is developed in incremental, rapid cycles. This results in
small incremental releases with each release building on
previous functionality

Each release is thoroughly tested to ensure software quality is
maintained

It is used for time critical applications. Extreme Programming
(XP) is currently one of the most well known agile development
life cycle model

29

2017-02-05

29

Agilis hálózati szolgálatásfejlesztés

Agile Model

30

2017-02-05

30

Agilis hálózati szolgálatásfejlesztés

Advantages of Agile
model
Customer satisfaction by rapid, continuous delivery of useful software.

People and interactions are emphasized rather than process and tools. Customers, developers
and testers constantly interact with each other.

Working software is delivered frequently (weeks rather than months).

Face-to-face conversation is the best form of communication.

Close, daily cooperation between business people and developers.

Continuous attention to technical excellence and good design.

Regular adaptation to changing circumstances.

Even late changes in requirements are welcome

31

2017-02-05

31

Agilis hálózati szolgálatásfejlesztés

Disadvantages of
Agile model

In case of some software deliverables, especially the large ones, it is
difficult to assess the effort required at the beginning of the software
development life cycle.

There is lack of emphasis on necessary designing and documentation.

The project can easily get taken off track if the customer representative
is not clear what final outcome that they want.

Only senior programmers are capable of taking the kind of decisions
required during the development process. Hence it has no place for
newbie programmers, unless combined with experienced resources.

32

2017-02-05

32

Agilis hálózati szolgálatásfejlesztés

When to use Agile
model

When new changes are needed to be implemented.

To implement a new feature the developers need to lose only the
work of a few days, or even only hours, to roll back and implement
it.

Unlike the waterfall model in agile model very limited planning is
required to get started with the project.

Both system developers and stakeholders alike, find they also get
more freedom of time and options than if the software was
developed in a more rigid sequential way.

33

• When new changes are needed to be implemented. The freedom agile

gives to change is very important. New changes can be implemented at

very little cost because of the frequency of new increments that are

produced.

• To implement a new feature the developers need to lose only the work

of a few days, or even only hours, to roll back and implement it.

• Unlike the waterfall model in agile model very limited planning is

required to get started with the project. Agile assumes that the end

users’ needs are ever changing in a dynamic business and IT world.

Changes can be discussed and features can be newly effected or removed

based on feedback. This effectively gives the customer the finished system

they want or need.

• Both system developers and stakeholders alike, find they also get

more freedom of time and options than if the software was developed

in a more rigid sequential way. Having options gives them the ability to

leave important decisions until more or better data or even entire hosting

programs are available; meaning the project can continue to move forward

without fear of reaching a sudden standstill.

2017-02-05

33

Agilis hálózati szolgálatásfejlesztés

iterative life cycle
model

Does not attempt to start with a full specification of
requirements

Instead, development begins by specifying and
implementing just part of the software, which can then
be reviewed in order to identify further requirements

This process is then repeated, producing a new
version of the software for each cycle of the model

34

2017-02-05

34

Agilis hálózati szolgálatásfejlesztés

iterative life cycle
model

35

2017-02-05

35

Agilis hálózati szolgálatásfejlesztés

Advantages of
Iterative model

In iterative model we can only create a high-level design of the
application before we actually begin to build the product.

In iterative model we are building and improving the product
step by step.

In iterative model we can get the reliable user feedback.

In iterative model less time is spent on documenting and more
time is given for designing.

36

• In iterative model we can only create a high-level design of the

application before we actually begin to build the product and define

the design solution for the entire product. Later on we can design and built

a skeleton version of that, and then evolved the design based on what had

been built.

• In iterative model we are building and improving the product step by

step. Hence we can track the defects at early stages. This avoids the

downward flow of the defects.

• In iterative model we can get the reliable user feedback. When

presenting sketches and blueprints of the product to users for their

feedback, we are effectively asking them to imagine how the product will

work.

• In iterative model less time is spent on documenting and more time is

given for designing.

2017-02-05

36

Agilis hálózati szolgálatásfejlesztés

Disadvantages of
Iterative model

Each phase of an iteration is rigid with no
overlaps

Costly system architecture or design issues
may arise because not all requirements are
gathered up front for the entire lifecycle

37

2017-02-05

37

Agilis hálózati szolgálatásfejlesztés

When to use iterative
model

When the project is big.

Major requirements must be defined;
however, some details can evolve with
time.

38

2017-02-05

38

Agilis hálózati szolgálatásfejlesztés

Incremental vs.
Iterative

39

2017-02-05

39

Agilis hálózati szolgálatásfejlesztés

LEAN

Lean philosophy regards
everything not adding value to
the customer as waste

40

2017-02-05

40

Agilis hálózati szolgálatásfejlesztés

Lean history

41

2017-02-05

41

Agilis hálózati szolgálatásfejlesztés

Principles of Lean

1. Eliminate Waste

2. Build Quality In

3. Create Knowledge

4. Defer Commitment

5. Deliver Fast

6. Respect People

7. Optimize the Whole

42

2017-02-05

42

Agilis hálózati szolgálatásfejlesztés

1. Eliminate waste
› What is waste in software?

› Any activity or product that does not provide value to customers – anything a customer would not pay for

43

We want to maximize time spent on activities that add value to the product,

and eliminate waste activities.

What is waste? It is any activity or product that does not provide value to

customers – anything a customer would not pay for.

There are 7 wastes in software:

- inventory (features not yet deployed, or incomplete features)

-extra processes (such as unnecessary documents)

-extra or unused features

-task switching

-Waiting

-Motion (for example walking across the building to ask someone a question)

-defects

What type of waste does this image represent?

The 7 types of software waste can be compared the types of waste in

manufacturing:

Rework, Overproduction, Conveyance, Waiting, Inventory, Motion,

Overprocessing

2017-02-05

43

Agilis hálózati szolgálatásfejlesztés

Latent Skill, Danger, Poor Information, Material, Breakdown

Wikipedia

Lean philosophy regards everything not adding value to the customer as

waste (muda). Such waste may include:

unnecessary code and functionality

delay in the software development process

unclear requirements

avoidable process repetition (often caused by insufficient testing)

bureaucracy

slow internal communication

In order to eliminate waste, one should be able to recognize it. If some activity

could be bypassed or the result could be achieved without it, it is waste.

Partially done coding eventually abandoned during the development process

is waste. Extra processes and features not often used by customers are

waste. Waiting for other activities, teams, processes is waste. Defects and

lower quality are waste. Managerial overhead not producing real value is

waste.

A value stream mapping technique is used to identify waste. The second step

is to point out sources of waste and to eliminate them. Waste-removal should

take place iteratively until even seemingly essential processes and

procedures are liquidated.

2017-02-05

43

Agilis hálózati szolgálatásfejlesztés

7 Wastes in SW
Development

Partially

done work

Extra Processes Extra features

Task switching
Motion and

handover
Waiting &

Delays

Defects

44

2017-02-05

44

Agilis hálózati szolgálatásfejlesztés

2. Build quality in
› Cost of fixing a shipped product is much higher then fixing a product that is being build

› Think how to test before starting

45

The people who built this path didn’t build quality in. The cost of fixing a

shipped product is much higher then fixing a product that is being build.

Piling up code on top of a shaky foundation will result in a very expensive re-

factoring effort.

Continuous refactoring, continuous testing, and continuous integration are

agile ways to build quality in.

Wikipedia

Build integrity in

The customer needs to have an overall experience of the System – this is the

so-called perceived integrity: how it is being advertised, delivered, deployed,

accessed, how intuitive its use is, price and how well it solves problems.

Conceptual integrity means that the system’s separate components work well

together as a whole with balance between flexibility, maintainability, efficiency,

and responsiveness. This could be achieved by understanding the problem

domain and solving it at the same time, not sequentially. The needed

information is received in small batch pieces – not in one vast chunk with

preferable face-to-face communication and not any written documentation.

The information flow should be constant in both directions – from customer to

developers and back, thus avoiding the large stressful amount of information

2017-02-05

45

Agilis hálózati szolgálatásfejlesztés

after long development in isolation.

One of the healthy ways towards integral architecture is refactoring. As more

features are added to the original code base, the harder it becomes to add

further improvements. Refactoring is about keeping simplicity, clarity,

minimum amount of features in the code. Repetitions in the code are signs for

bad code designs and should be avoided. The complete and automated

building process should be accompanied by a complete and automated suite

of developer and customer tests, having the same versioning, synchronization

and semantics as the current state of the System. At the end the integrity

should be verified with thorough testing, thus ensuring the System does what

the customer expects it to. Automated tests are also considered part of the

production process, and therefore if they do not add value they should be

considered waste. Automated testing should not be a goal, but rather a

means to an end, specifically the reduction of defects.

2017-02-05

45

Agilis hálózati szolgálatásfejlesztés

3. Create knowledge
› Amplify learning

› Share knowledge gained with the whole team

46

JBTDT: Just Build The Damn Thing - learn from actually building it.

Engage as a Team: let the Specialist dissect the problem, let the rest of the

Team build the solution.

Share knowledge gained with the whole Team.

Share knowledge across multiple Teams.

Wikipedia

Amplify learning

Software development is a continuous learning process with the additional

challenge of development teams and end product sizes. The best approach

for improving a software development environment is to amplify learning. The

accumulation of defects should be prevented by running tests as soon as the

code is written. Instead of adding more documentation or detailed planning,

different ideas could be tried by writing code and building. The process of user

requirements gathering could be simplified by presenting screens to the end-

users and getting their input.

The learning process is sped up by usage of short iteration cycles – each one

coupled with refactoring and integration testing. Increasing feedback via short

feedback sessions with customers helps when determining the current phase

of development and adjusting efforts for future improvements. During those

short sessions both customer representatives and the development team

2017-02-05

46

Agilis hálózati szolgálatásfejlesztés

learn more about the domain problem and figure out possible solutions for

further development. Thus the customers better understand their needs,

based on the existing result of development efforts, and the developers learn

how to better satisfy those needs. Another idea in the communication and

learning process with a customer is set-based development – this

concentrates on communicating the constraints of the future solution and not

the possible solutions, thus promoting the birth of the solution via dialogue

with the customer.

2017-02-05

46

Agilis hálózati szolgálatásfejlesztés

4. Defer commitment
› Decide as late as possible

• Keep your options open up to the last responsible minute

• Wait until you have better information to make the decision

• Be flexible to react to the changes that will surely happen in the market

and in the technology
47

Keep your options open up to the last responsible minute.

Wait until you have better information to make the decision.

Be flexible to react to the changes that will surely happen in the market and in

the technology.

[Note to presenter: very observant people may notice that this image shows a

crossing, and not a switch where trains can change tracks. Change the image

if you like.]

Wikipedia

Decide as late as possible

As software development is always associated with some uncertainty, better

results should be achieved with an options-based approach, delaying

decisions as much as possible until they can be made based on facts and not

on uncertain assumptions and predictions. The more complex a system is, the

more capacity for change should be built into it, thus enabling the delay of

important and crucial commitments. The iterative approach promotes this

principle – the ability to adapt to changes and correct mistakes, which might

be very costly if discovered after the release of the system.

An agile software development approach can move the building of options

earlier for customers, thus delaying certain crucial decisions until customers

2017-02-05

47

Agilis hálózati szolgálatásfejlesztés

have realized their needs better. This also allows later adaptation to changes

and the prevention of costly earlier technology-bounded decisions. This does

not mean that no planning should be involved – on the contrary, planning

activities should be concentrated on the different options and adapting to the

current situation, as well as clarifying confusing situations by establishing

patterns for rapid action. Evaluating different options is effective as soon as it

is realized that they are not free, but provide the needed flexibility for late

decision making.

2017-02-05

47

Agilis hálózati szolgálatásfejlesztés

5. Deliver as fast as possible
› Deliver quickly to maximize return on investment, reduce risk, and

get feedback from real customers and users

48

We deliver quickly to maximize return on investment, reduce risk, and get

feedback from real customers and users.

Markets and technology change quickly. Long delivery cycles increase risk

that you won’t deliver a product that meets customers’ needs.

Wikipedia

Deliver as fast as possible

In the era of rapid technology evolution, it is not the biggest that survives, but

the fastest. The sooner the end product is delivered without major defects, the

sooner feedback can be received, and incorporated into the next iteration.

The shorter the iterations, the better the learning and communication within

the team. With speed, decisions can be delayed. Speed assures the fulfilling

of the customer's present needs and not what they required yesterday. This

gives them the opportunity to delay making up their minds about what they

really require until they gain better knowledge. Customers value rapid delivery

of a quality product.

The just-in-time production ideology could be applied to software

development, recognizing its specific requirements and environment. This is

achieved by presenting the needed result and letting the team organize itself

and divide the tasks for accomplishing the needed result for a specific

iteration. At the beginning, the customer provides the needed input. This could

be simply presented in small cards or stories – the developers estimate the

2017-02-05

48

Agilis hálózati szolgálatásfejlesztés

time needed for the implementation of each card. Thus the work organization

changes into self-pulling system – each morning during a stand-up meeting,

each member of the team reviews what has been done yesterday, what is to

be done today and tomorrow, and prompts for any inputs needed from

colleagues or the customer. This requires transparency of the process, which

is also beneficial for team communication. Another key idea in Toyota's

Product Development System is set-based design. If a new brake system is

needed for a car, for example, three teams may design solutions to the same

problem. Each team learns about the problem space and designs a potential

solution. As a solution is deemed unreasonable, it is cut. At the end of a

period, the surviving designs are compared and one is chosen, perhaps with

some modifications based on learning from the others - a great example of

deferring commitment until the last possible moment. Software decisions

could also benefit from this practice to minimize the risk brought on by big up-

front design.

2017-02-05

48

Agilis hálózati szolgálatásfejlesztés

6. Respect people
› Empower the team

49

Leverage ALL of your people’s talents and intelligence. Give them a goal and

let them find the best way to accomplish it. When people have ownership over

their work they are more motivated.

The army is a great example of “self-organized units”.

Teams are given a “Commander’s intent” and can organize themselves as

they see fit.

Wikipedia

Empower the team

There has been a traditional belief in most businesses about the decision-

making in the organization – the managers tell the workers how to do their

own job. In a "Work-Out technique", the roles are turned – the managers are

taught how to listen to the developers, so they can explain better what actions

might be taken, as well as provide suggestions for improvements. The lean

approach favors the aphorism "find good people and let them do their own

job," encouraging progress, catching errors, and removing impediments, but

not micro-managing.

Another mistaken belief has been the consideration of people as resources.

People might be resources from the point of view of a statistical data sheet,

but in software development, as well as any organizational business, people

do need something more than just the list of tasks and the assurance that

2017-02-05

49

Agilis hálózati szolgálatásfejlesztés

they will not be disturbed during the completion of the tasks. People need

motivation and a higher purpose to work for – purpose within the reachable

reality, with the assurance that the team might choose its own commitments.

The developers should be given access to the customer; the team leader

should provide support and help in difficult situations, as well as ensure that

skepticism does not ruin the team’s spirit.

2017-02-05

49

Agilis hálózati szolgálatásfejlesztés

7. Optimize the whole
› Improve the entire system

› Find weakest link/biggest problem in your whole system and fix that first

› More programmers – not enough testers: cannot deliver more value

50

Apply Systems thinking.

Find the weakest link or the biggest problem in your whole system and fix that

first.

Sub-optimization is to trying to optimize some small part of the system, which

may not help the whole system. Suppose you add more programmers to a

team so you can create more code, but you don’t have enough testers to test

and deploy all the extra code; the system still cannot deliver more value.

Wikipedia

See the whole

Software systems nowadays are not simply the sum of their parts, but also

the product of their interactions. Defects in software tend to accumulate

during the development process – by decomposing the big tasks into smaller

tasks, and by standardizing different stages of development, the root causes

of defects should be found and eliminated. The larger the system, the more

organizations that are involved in its development and the more parts are

developed by different teams, the greater the importance of having well

defined relationships between different vendors, in order to produce a system

with smoothly interacting components. During a longer period of development,

a stronger subcontractor network is far more beneficial than short-term profit

optimizing, which does not enable win-win relationships.

2017-02-05

50

Agilis hálózati szolgálatásfejlesztés

Lean thinking has to be understood well by all members of a project, before

implementing in a concrete, real-life situation. "Think big, act small, fail fast;

learn rapidly" – these slogans summarize the importance of understanding

the field and the suitability of implementing lean principles along the whole

software development process. Only when all of the lean principles are

implemented together, combined with strong "common sense" with respect to

the working environment, is there a basis for success in software

development.

2017-02-05

50

Agilis hálózati szolgálatásfejlesztés

5151

HOW IT ALL FITS TOGETHER

51

Speakers notes:

It begins with Lean as a concept, optimizing the whole vaule flow

With the Agile concept we focus on cooperation to eliminate waste

Scrum is one typical method that can be used to plan and keep good

control of what to do and who is doing what

XP is yet another method, but in this case a specific one for SW

development (eXtreme Programming)

Course Documentation Ericsson R&D

Agile & Lean Basics

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Waterfall, Agile, Lean

52

2017-02-05

52

Agilis hálózati szolgálatásfejlesztés

Agile

53

2017-02-05

53

Agilis hálózati szolgálatásfejlesztés

http://agilemanifesto.org/

2017-02-05

54

Agilis hálózati szolgálatásfejlesztés

Principles of the Agile
Manifesto (1/2)
1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

56

http://www.agilemanifesto.org/principles.html

56

The manifesto also includes twelve principles. Here they are.

12 principles: they are each self-explanatory.

56

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Principles of the Agile
Manifesto (2/2)

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.
(YAGNI – You Aren’t Gonna Need It.)

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

57

http://www.agilemanifesto.org/principles.html

57

57

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Agile Approaches
Agile methods are not unified, there is
diversity

Each method implements the Agile
Manifesto differently

• Extreme Programming (XP)

• Scrum

• Kanban

We will consider

There are common practices across
these methods, which we’ll examine

58

2017-02-05

58

Agilis hálózati szolgálatásfejlesztés

5959

HOW IT ALL FITS TOGETHER

59

Speakers notes:

It begins with Lean as a concept, optimizing the whole vaule flow

With the Agile concept we focus on cooperation to eliminate waste

Scrum is one typical method that can be used to plan and keep good

control of what to do and who is doing what

XP is yet another method, but in this case a specific one for SW

development (eXtreme Programming)

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Extreme Programming
(XP)

Formulated in 1999 by Kent Beck, Ward
Cunningham and Ron Jeffries

Agile software development methodology (others:
Scrum, DSDM, Kanban)

Developed in reaction to high ceremony
methodologies

60

2017-02-05

60

Agilis hálózati szolgálatásfejlesztés

6262

EXAMPLe OF PRINCIPLES FROM XP
(EXTREME PROGRAMMING)

› Test Driven Development

› Continuous Integration

› Collective Code Ownership

62

Speakers notes:

Collective code ownership doesn’t mean that everyone is supposed to do

everything. It means that we try learn more from each other to become less

vulnerable so e g Charles can keep on working with a design task even if

Edith is on sick leave on a Monday.

62

Agilis hálózati szolgálatásfejlesztés 2017-02-05

XP: Why?

• Get all the requirements before starting
design

• Freeze the requirements before starting
development

• Resist changes: they will lengthen schedule

• Build a change control process to ensure
that proposed changes are looked at
carefully and no change is made without
intense scrutiny

• Deliver a product that is obsolete on release

Previously:

63

2017-02-05

63

Agilis hálózati szolgálatásfejlesztés

XP: Embrace Change

Recognize that:

• All requirements will not be known at the beginning

• Requirements will change

Use tools to accommodate change as a natural process

Do the simplest thing that could possibly work and
refactor mercilessly

Emphasize values and principles rather than process

64

2017-02-05

64

Agilis hálózati szolgálatásfejlesztés

XP Practices

(Source: http://www.xprogramming.com/xpmag/whatisxp.htm)
65

2017-02-05

65

Agilis hálózati szolgálatásfejlesztés

The XP team

How to design and
program the
software

• programmers, designers,
and architects

Where defects are
likely to hide

• testers

Why the software is
important

• product manager

The rules the
software should
follow

• domain experts

How the software
should behave

• interaction designers

How the user
interface should look

• graphic designers

How to interact with
the rest of the
company

• project manager

Where to improve
work habits

• coach

67

2017-02-05

67

Agilis hálózati szolgálatásfejlesztés

XP Practices: Whole
Team

All contributors to an XP project are one team

Must include a business representative: the ‘Customer’

• Provides requirements

• Sets priorities

• Steers project

Team members are programmers, testers, analysts, coach, manager

Best XP teams have no specialists

68

2017-02-05

68

Agilis hálózati szolgálatásfejlesztés

XP Team size

Assume teams with 4 to 10
programmers (5 to 20 total team
members).

Applying the staffing guidelines
to a team of 6 programmers
produces a team that also
includes 4 customers, 1 tester,
and a project manager, for a
total team size of 12 people.

69

2017-02-05

69

Agilis hálózati szolgálatásfejlesztés

Full-Time Team Members

This particularly applies to customers, who are
often surprised by the level of involvement XP

requires of them.

All the team members should sit with the team
full-time and give the project their complete

attention.

70

Some organizations like to assign people to multiple projects simultaneously.

This fractional assignment is particularly common in matrix-managed

organizations. (If team members have two managers, one for their project and

one for their function, you are probably in a matrixed organization.)

2017-02-05

70

Agilis hálózati szolgálatásfejlesztés

XP Practices: Planning
Game

Two key questions in software development:

• Predict what will be accomplished by the due date

• Determine what to do next

Need is to steer the project

Exact prediction (which is difficult) is not necessary

71

2017-02-05

71

Agilis hálózati szolgálatásfejlesztés

XP Practices: Planning
Game

XP Release Planning

• Customer presents required features

• Programmers estimate difficulty

• Imprecise but revised regularly

XP Iteration Planning

• Two week iterations

• Customer presents features required

• Programmers break features down into tasks

• Team members sign up for tasks

• Running software at end of each iteration
72

2017-02-05

72

Agilis hálózati szolgálatásfejlesztés

XP Practices:
Customer Tests

The Customer defines one or more automated
acceptance tests for a feature

Team builds these tests to verify that a feature is
implemented correctly

Once the test runs, the team ensures that it keeps
running correctly thereafter

System always improves, never backslides

73

2017-02-05

73

Agilis hálózati szolgálatásfejlesztés

XP Practices: Small
Releases

Team releases running, tested software every
iteration

Releases are small and functional

The Customer can evaluate or in turn, release to end
users, and provide feedback

Important thing is that the software is visible and
given to the Customer at the end of every iteration

74

2017-02-05

74

Agilis hálózati szolgálatásfejlesztés

XP Practices: Simple
Design

Build software to a simple design

Through programmer testing and design improvement, keep the
software simple and the design suited to current functionality

Design steps in release planning and iteration planning

Teams design and revise design through refactoring, through the
course of the project

75

2017-02-05

75

Agilis hálózati szolgálatásfejlesztés

XP Practices:
Informative Workspace

Your workspace is
the cockpit of your

development
effort: create an

informative
workspace

An informative
workspace
broadcasts

information into
the room (eg.

radiators)

It’s improve
stakeholder trust

76

• Your workspace is the cockpit of your development effort. Just as a pilot

surrounds himself with information necessary to fly a plane, arrange your

workspace with information necessary to steer your project: create an

informative workspace.

• An informative workspace broadcasts information into the room. When

people take a break, they will sometimes wander over and stare at the

information surrounding them. Sometimes, that brief zoneout will result in

an aha moment of discovery.

• An informative workspace also allows people to sense the state of the

project just by walking into the room. It conveys status information without

interrupting team members and helps improve stakeholder trust.

2017-02-05

76

Agilis hálózati szolgálatásfejlesztés

XP Practices: Pair
Programming

All production software is built by two programmers, sitting
side by side, at the same machine

All production code is therefore reviewed by at least one other
programmer

Research into pair programming shows that pairing produces
better code in the same time as programmers working singly

Pairing also communicates knowledge throughout the team

77

2017-02-05

77

Agilis hálózati szolgálatásfejlesztés

XP Practices: Test-
Driven Development

Teams practice TDD by working in short cycles of adding a
test, and then making it work

Easy to produce code with 100 percent test coverage

These programmer tests or unit tests are all collected together

Each time a pair releases code to the repository, every test
must run correctly

78

2017-02-05

78

Agilis hálózati szolgálatásfejlesztés

XP Practices: Design
Improvement

Continuous design improvement process called
‘refactoring’:

• Removal of duplication

• Increase cohesion

• Reduce coupling

Refactoring is supported by comprehensive
testing - customer tests and programmer tests

79

2017-02-05

79

Agilis hálózati szolgálatásfejlesztés

XP Practices: Continuous
Integration

Teams keep the system fully integrated at all times

Daily, or multiple times a day builds

Avoid ‘integration hell’

Avoid code freezes

10 minutes build

80

'integration hell', e.g., integrating a big chunk of code changes at the last

minute which results in conflicts, and can take more time to resolve as

compared to the time required to make original changes.

2017-02-05

80

Agilis hálózati szolgálatásfejlesztés

XP Practices: Collective
Code Ownership

Any pair of programmers can improve any code at any time

All code gets the benefit of many people’s attention

Avoid duplication

Programmer tests catch mistakes

Pair with expert when working on unfamiliar code

81

2017-02-05

81

Agilis hálózati szolgálatásfejlesztés

XP Practices: Coding
Standard

Code must look familiar, to support collective code ownership

All code in the system must look as though written by an
individual

Use common coding standard

82

2017-02-05

82

Agilis hálózati szolgálatásfejlesztés

XP Practices:
Sustainable Pace

Team will produce high quality product when not overly
exerted

Avoid overtime, maintain 40 hour weeks

‘Death march’ projects are unproductive and do not produce
quality software

Work at a pace that can be sustained indefinitely

84

In project management, a death march is a project where the members feel it

is destined to fail, or requires a stretch of unsustainable overwork. The

general feel of the project reflects that of an actual death march because the

members of the project are forced to continue the project by their superiors

against their better judgment.

2017-02-05

84

Agilis hálózati szolgálatásfejlesztés

Characteristics of
Successful XP Projects

Very rapid development

Exceptional responsiveness to user and
customer change requests

High customer satisfaction

Amazingly low error rates

System begins returning value to customers
very early in the process

85

2017-02-05

85

Agilis hálózati szolgálatásfejlesztés

XP Values

Communication Simplicity

Feedback Courage

86

2017-02-05

86

Agilis hálózati szolgálatásfejlesztés

XP Values:
Communication

Poor communication in software teams is one of the root
causes of failure of a project

Stress on good communication between all stakeholders--
customers, team members, project managers

Customer representative always on site

Paired programming

87

2017-02-05

87

Agilis hálózati szolgálatásfejlesztés

XP Values: Simplicity

‘Do the Simplest Thing That Could Possibly
Work’

• Implement a new capability in the simplest possible way

• Refactor the system to be the simplest possible code with
the current feature set

‘You Aren’t Going to Need It’ (YAGNI)

• Never implement a feature you don’t need now

88

2017-02-05

88

Agilis hálózati szolgálatásfejlesztés

You Aren’t Gonna Need It
(YAGNI)

Important aspect of simple design: avoid
speculative coding.

• Whenever you’re tempted to add something to your
design, ask yourself if it supports the stories and features
you’re currently delivering. If not, well... you aren’t gonna
need it. Your design could change. Your customers’ minds
could change.

Similarly, remove code that’s no longer in use.

• You’ll make the design smaller, simpler, and easier to
understand. If you need it again in the future, you can
always get it out of version control. For now, it’s a
maintenance burden you don’t need.

89

Important aspect of simple design: avoid speculative coding. Whenever you’re

tempted to add something to your design, ask yourself if it supports the

stories and features you’re currently delivering. If not, well... you aren’t gonna

need it. Your design could change. Your customers’ minds could change.

Similarly, remove code that’s no longer in use. You’ll make the design smaller,

simpler, and easier to understand. If you need it again in the future, you can

always get it out of version control. For now, it’s a maintenance burden you

don’t need.

We do this because excess code makes change difficult. Speculative design,

added to make specific changes easy, often turns out to be wrong in some

way, which actually makes changes more difficult. It’s usually easier to add to

a design than to fix a design that’s wrong. The incorrect design has code that

depends on it, sometimes locking bad decisions in place.

2017-02-05

89

Agilis hálózati szolgálatásfejlesztés

XP Values: Feedback

Always a running system that delivers information
about itself in a reliable way

The system and the code provides feedback on
the state of development

Catalyst for change and an indicator of progress

90

2017-02-05

90

Agilis hálózati szolgálatásfejlesztés

XP Values: Courage

Projects are
people-centric

Ingenuity of people
and not any
process that

causes a project to
succeed

91

2017-02-05

91

Agilis hálózati szolgálatásfejlesztés

XP Criticism

Unrealistic--
programmer
centric, not

business focused

Detailed
specifications are

not written

Design after
testing

Constant
refactoring

Customer
availability

12 practices are
too

interdependent

92

2017-02-05

92

Agilis hálózati szolgálatásfejlesztés

XP Thoughts

The best design is the code.

Testing is good. Write tests before code. Code is complete when it passes
tests.

Simple code is better. Write only code that is needed. Reduce complexity
and duplication.

Keep code simple. Refactor.

Keep iterations short. Constant feedback.

93

2017-02-05

93

Agilis hálózati szolgálatásfejlesztés

Common XP
Misconceptions

No written design documentation

• Truth: no formal standards for how much or what kind of
docs are needed.

No design

• Truth: minimal explicit, up-front design; design is an
explicit part of every activity through every day.

XP is easy

• Truth: although XP does try to work with the natural
tendencies of developers, it requires great discipline and
consistency.

94

2017-02-05

94

Agilis hálózati szolgálatásfejlesztés

More Misconceptions

XP is just legitimized hacking

• Truth: XP has extremely high quality standards
throughout the process

• Unfortunate truth: XP is sometimes used as an
excuse for sloppy development

XP is the one, true way to build software

• Truth: it seems to be a sweet spot for certain kinds
of projects

95

2017-02-05

95

Agilis hálózati szolgálatásfejlesztés

XP Summary (by ISTQB)

Values:

• communication, simplicity, feedback, courage, respect

Principles:

• humanity, economics, mutual benefit, self-similarity, improvement,
diversity, reflection, flow, opportunity, redundancy, failure, quality, baby
steps, accepted responsibility

Primary practices:

• sit together, whole team, informative workspace (radiators), energized
work, pair programming, stories, weekly cycle, quarterly cycle, slack (do
not use 100% allocation), 10 minute build, continuous integration, test
first programming, incremental design

Many other agile practices use some aspects of XP

96

2017-02-05

96

Agilis hálózati szolgálatásfejlesztés

9797

HOW IT ALL FITS TOGETHER

97

Speakers notes:

It begins with Lean as a concept, optimizing the whole vaule flow

With the Agile concept we focus on cooperation to eliminate waste

Scrum is one typical method that can be used to plan and keep good

control of what to do and who is doing what

XP is yet another method, but in this case a specific one for SW

development (eXtreme Programming)

Agilis hálózati szolgálatásfejlesztés 2017-02-05

9898

THE SCRUM FRAMEWORK

98

Speakers notes:

Process description of Scrum as one example of a method that can be used

within Lean and Agile product development

Agilis hálózati szolgálatásfejlesztés 2017-02-05

9999

ROLES

Product Owner

Coach

Team

99

Speakers notes:

Product owner

Represents the interests of all the stakeholders

ROI objectives

Prioritizes the product backlog

Team

Cross-functional

Self-managing

Self-organizing

Coach

Coaches the team in the Agile and Lean process

Challenges the team for continuous improvement

Teaching the way we do Agile & Lean

Ensures the following of Agile & Lean rules and practices

Agilis hálózati szolgálatásfejlesztés 2017-02-05

100100

USER STORIES AND ESTIMATION (1)

Describe requirements in product backlog

Syntax: As <role> I want to <requirement>
because <business reason>

Example:

• As a customer I want to reserve movie tickets with my
mobile

• Because I want to be sure that I have a seat when I arrive
to the theater

100

Speakers notes:

User stories are a way of describing customer requirements without

having to create formalized requirement documents and without

performing administrative tasks related to maintaining them.

A user story could describe a small feature but normally a feature is

divided into several user stories.

Agilis hálózati szolgálatásfejlesztés 2017-02-05

101101

USER STORIES AND ESTIMATION (2)

Planning poker method

• Product owner (or a
stakeholder with the best
knowledge) explains the story

• Team members estimate the
story independently and select
a card

• They show the cards
simultaneously

• Explain why estimates differ

• End or go back to step 2
101

Speakers notes:

This is an exercise which will focus on the ability to cooperate in a Team

Agilis hálózati szolgálatásfejlesztés 2017-02-05

102102

Sprint planning

Time-box (eg. 2 hours)

• 1st - 1 hours max. for team to select Product
Backlog and sets goal with Product Owner

• 2nd - 1 hours max. for team to define Sprint
Backlog to build functionality

Attendees

• Product owner, team and Scrum Master

Product owner must prepare the Product
Backlog prior to the meeting

• Product owner decides what the product backlog
constitutes

Output: Sprint backlog

• Tasks, task estimates, task assignments

Product

Backlog

Team

Capacity

Analyze, evaluate and select

Product Backlog for Sprint

Estimated

Work

Decompose to specifications

and tasks, estimate tasks

Budgeted

Work in

Tasks

102

Speakers notes:

The very first time a Team work like this is set up it might take an hour
or two.

This example could be a SW Team with a “normal size” of 6-8
members, (depending on the product, its maturity and complexity) that
after implementation of Agile and Lean wow now can be done within a
few minutes, or significantly shorter planning time.

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Code produced (all ‘to do’ items in code completed)

Code commented, checked in and run against current version in source control

Peer reviewed (or produced with pair programming) and meeting development standards

Builds without errors

Unit tests written and passing

Deployed to system test environment and passed system tests

Passed UAT (User Acceptance Testing) and signed off as meeting requirements

Any build/deployment/configuration changes implemented/documented/communicated

Relevant documentation/diagrams produced and/or updated

Remaining hours for task set to zero and task closed

Definition of DONE (DoD)
10 Point Checklist

103

See more at: http://www.allaboutagile.com/definition-of-done-10-point-

checklist/#sthash.8rcJSONz.dpuf

2017-02-05

103

Agilis hálózati szolgálatásfejlesztés

104104

TRANSPARENCY – TASK BOARD

104

Picture of task board: Kniberg, Henrik 2006. Scrum and XP from the Trenches.

<http://www.crisp.se/henrik.kniberg/ScrumAndXpFromTheTrenches.pdf>

Speakers notes:

Normally the team has their Daily Scrum standing at this task board. A Daily Scrum

is a:

-Daily 15 minute work meeting;

-Same place and time every day;

- Where everyone answers three questions;

What have you done since last meeting?

What will you do before next meeting?

What is in your way?

-In order to find Impediments and make Decisions

The definition of Done is very important to agree upon, settle this within the

Team

Agilis hálózati szolgálatásfejlesztés 2017-02-05

105105

RETROSPECTIVES

Set the stage

• Focus for this retrospective

Gather data

• Ground it in facts, not opinions

Generate insights

• Observe patterns

Decide what to do

• Move from discussion to action

105

Speakers notes:

Point out that retrospectives are for the team and should thereby be

run by he team, not a manager (the team should even decide if the

manager is allowed to participate).

The goal is to find impediments for better ways of working. Earlier,

before Agile ways of working, this was normally done once or twice a

day. Now, we want to do this at the end of every sprint.

Agilis hálózati szolgálatásfejlesztés 2017-02-05

106106

Scrum, Summary (by ISTQB)

Practises

• Sprint (Iteration)

• Product increment

• Products backlog

• Definition of Done (DoD) – exit
criteria

• Timeboxing – fix duration for
iteration, fix daily meetings

• Transparency

No specific software
development techniques

Roles

• Scrum Master (SM) ensures
practices and rules are
implemented, followed – process
focused scrum theory

• Product Owner (PO) represents
the customer and owns product
backlog – he/she can change
product backlog any time

• Development Team (3-9, self-
organized) develops and tests
product

Scrum does not prescribe
testing approach

106

Agilis hálózati szolgálatásfejlesztés 2017-02-05

Agilis hálózati szolgálatásfejlesztés 2017-02-05

107

看板 – Kanban cards limit excess work in progress

看板 – kanban literally means “visual
card,” “signboard,” or “billboard.”

Toyota originally used Kanban cards to
limit the amount of inventory tied up in
“work in progress” on a manufacturing
floor

kanban cards act as a form of
“currency” representing how WIP (Work
In Progress) is allowed in a system.

Kanban is an emerging process
framework that is growing in popularity
since it was first discussed at Agile 2007
in Washington D.C.

107

Kanban basic rules

Visualize the
workflow

Limit Work In
Progress (WIP)

Measure and
optimize lead
time

study implement integrate test done

2 4 1 3

Lead time until done

Cycle time of impl.

backlog

109

2017-02-05

109

Agilis hálózati szolgálatásfejlesztés

Processes

110

2017-02-05

110

Agilis hálózati szolgálatásfejlesztés

Visualize the
workflow

Product management Systems Design & FT System I&V Sales

Management team

C
u
s
to

m
e
r

Customer

111

2017-02-05

111

Agilis hálózati szolgálatásfejlesztés

Visualize the
workflow

Design (2)Planned (x) Test (6) Integrate (3) Done

US x

TR, CSR

US y

Improvement

112

2017-02-05

112

Agilis hálózati szolgálatásfejlesztés

Limiting Work In
Progress
20% time is lost to context switching per task, so fewer tasks
means less time lost (from Gerald Weinberg, Quality Software
Management: Systems Thinking)

113

2017-02-05

113

Agilis hálózati szolgálatásfejlesztés

Limiting Work In
Progress

114

2017-02-05

114

Agilis hálózati szolgálatásfejlesztés

Limiting Work In
Progress
New work items can only be pulled into a state if there is
capacity under the WIP limit.

(3) (2)

115

2017-02-05

115

Agilis hálózati szolgálatásfejlesztés

metrics
Metrics are a tool for everybody

The team is responsible for its metrics

Metrics allow for continuous improvement

• Quality

• Work in Process

• Lead / Cycle time

• Waste / Efficiency

• Throughput

Manage quantitatively and objectively using
only a few simple metrics

118

2017-02-05

118

Agilis hálózati szolgálatásfejlesztés

Little’s Law for
Queuing Theory

Total Cycle Time = Number of
Things in Progress / Average

Completion Rate

The only way to reduce cycle
time is by either reducing the

WIP, or improving the average
completion rate.

• Achieving both is desirable.

• Limiting WIP is easier to
implement by comparison.

119

2017-02-05

119

Agilis hálózati szolgálatásfejlesztés

Agilis hálózati szolgálatásfejlesztés 2017-02-05

120

Use cumulative flow diagrams to visualize work in
progress

www.agilemanagement.net/Articles/Papers/BorConManagingwithCumulat.html

Lead time: 11 D

Lead time: 4 D

120

Value stream mapping

121

2017-02-05

121

Agilis hálózati szolgálatásfejlesztés

Scaling – swim lanes

Team “A”

Team “B”

…

Team “X”

Not

started donestarted … … … …

123

2017-02-05

123

Agilis hálózati szolgálatásfejlesztés

One day in kanban
land

125

2017-02-05

125

Agilis hálózati szolgálatásfejlesztés

After a Kanban
Implementation…

“Nothing else in their world should have
changed. Job descriptions are the same.
Activities are the same. Handoffs are the
same. Artifacts are the same. Their process
hasn't changed other than you are asking
them to accept an WIP limit and to pull work
rather than receive it in a push fashion”
David Anderson.

126

2017-02-05

126

Agilis hálózati szolgálatásfejlesztés

sources

› http://www.limitedwipsociety.org/

› http://www.crisp.se/henrik.kniberg/kanban-vs-scrum.pdf

127

2017-02-05

127

Agilis hálózati szolgálatásfejlesztés

Kanban Summary (by ISTQB)

Optimize flow of work in value-added chain

Instruments:

• Kanban board

• Work-in-progress limit

• Lead time

Both Kanban and Scrum provide status transparency and
backlogs, but:

• Iteration is optional in Kanban

• Items can be delivered one at a time or in a release

• Timeboxing is optional

128

2017-02-05

128

Agilis hálózati szolgálatásfejlesztés

Lean & Agile

129

2017-02-05

129

Agilis hálózati szolgálatásfejlesztés

Helps in generating on-line documentation or offline
reference manual from documented source files.

Combine source code with documentation and other
reference materials

Make it easier to keep the documentation and code in
sync

• Doxygen

• Javadoc

• T3Doc

We will see:

Documentation
systems

130

2017-02-05

130

Agilis hálózati szolgálatásfejlesztés

Source code documentation
generator tool, Doxygen is a

documentation system for C++,
C, Java, Objective-C, Python,

IDL (Corba and Microsoft
flavors), Fortran, VHDL, PHP,

C#, and to some extend D.

Most useful tags:

• \file

• \author

• \brief

• \param

• \returns

• \todo (not used in assignments)

Doxygen

131

2017-02-05

131

Agilis hálózati szolgálatásfejlesztés

Attach special comments, called
documentation comment (or doc
comment) to classes, fields, and

methods. /** … */

Use a tool, called javadoc, to
automatically generate HTML pages

from source code.

Javadoc Tags: Special keyword
recognized by javadoc tool. Common
Tags:

• @author Author of the feature

• @version Current version number

• @since Since when

• @param Meaning of parameter

• @return Meaning of return value

• @throws Meaning of exception

• @see Link to other feature

Javadoc

132

2017-02-05

132

Agilis hálózati szolgálatásfejlesztés

TTCN-3 source code tagging

Standard: ETSI ES 201 873-10

Example

• /***************************************
** @desc XYZ **
** Initialize to pre-trial defaults. **
** **
123
**/

T3doc

133

2017-02-05

133

Agilis hálózati szolgálatásfejlesztés

TTCN-3 documentation
tags

134

2017-02-05

134

Agilis hálózati szolgálatásfejlesztés

