
1

ASN.1: encoding

Gusztáv ADAMIS

BME TMIT

adamis@tmit.bme.hu

György RÉTHY, János Zoltán SZABÓ

Test Competence Center, Ericsson Hungary

Sunday, February 26, 2017

2

Contents

PER

Basic principles of PER

PER-visible type constraints (sub-typing)

Encoding of different types

4

PER: Basic principles

 BE AS COMPACT AS REASONABLY POSSIBLE

– bit-oriented where possible

– neither the type nor tag is coded

– use of type constraints where possible to decrease size of message

– always the shortest possible format shall be used

5

PER: Types of PER

PER

Octet alignment Sender options

Basic-PER Canonical-PERALIGNED UNALIGNED

6

PER:

WHAT THE ENCODING OF A VALUE DEPENDS ON?

 The type

 PER-visible sub-typing

 PER-visible extension marker(s)

 OPTIONAL and/or DEFAULT element(s) in the type definition

 Tags of the components of complex types (SET, CHOICE)

 Whether a component is an open type

 If the value of an extensible type is within the root or not

 The value itself

7

PER: Production of the complete encoding

 All inner values are encoded and a field-list created

 Concatenate all fields of the field-list

– without any padding bits for UNALIGNED PER

– adding 0..7 padding bits before any octet-aligned bit fields for

ALIGNED PER

 Append 0..7 zero bits at the end of the whole production to

produce a multiple of 8 bits

 If the result is an empty bit string, replace it with one “0” octet

ALIGNED PER:
0..7 padding bits

PPPbit-field

octet boundary

octet-aligned bit-field

octet boundary

octet-aligned bit-field PPbit-field

0..7 zero bits

octet boundary octet boundary

8

PER: Encoding of open types

 In general (the same way the complete PDU processed)

– The actual type(s) occupying the field is/are encoded into bit fields

– Bit fields are concatenated, with padding bits, where needed

– The production is padded to multiple number of 8 bits

– The whole composite octet string is wrapped by a general length

determinant, which ALWAYS counts in octets

9

PER: Uses subtype constraint at coding

element1 INTEGER(0..7) ::= 5 1 0 1

element3 INTEGER (MIN..7) ::= 5

element4 INTEGER ::= 5

0 0 0 0 0 1 0 10 0 0 0 0 0 0 1

L V

element2 INTEGER(15..22) ::= 20 1 0 1

Value Code point
0 000
1 001

…

15 000
16 001

...

11

 Single value, value list constraint: is visible for INTEGER only

– INTEGER (1|2) => coded as constrained type

– IA5String (“abc” | “abcd”), BIT STRING (‘00’|’11’)

=> coded as unconstrained type

PER: PER visibility of subtypes - 1

SUMMARY

12

 Value range constraint: NOT visible for REAL and not known-

multiplier character string types :

INTEGER (0..255) => coded as constrained type

VideotexString (FROM (“a” .. ”z”)) => coded as unconstrained type

 Known-multiplier character string types:

– IA5String

– PrintableString

– VisibleString

– NumericString

– UniversalString

– BMPString

PER: PER visibility of subtypes - 1

13

PER: PER visibility of subtypes - 2

 Size constraint is NOT visible for not known-multiplier character

string types

SEQUENCE (SIZE (0..63)) OF MyType => coded as constrained type

IA5String (SIZE (0..63)) => coded as constrained type

VideotexString (SIZE (0..63) => coded as unconstrained type

 Permitted Alphabet is visible ONLY for non-extensible

known-multiplier character string types

IA5String (FROM (“abc”)) => coded as constrained type

IA5String (FROM (“abc”), ...) => coded as unconstrained type

VideotexString (FROM (“abc”)) => coded as unconstrained type

 Type constraint is NEVER PER-visible
SUMMARY

14

PER: General length determinant (if length is NOT constrained!!)

two octets
length

encoding Count (bottom 8 bits)

128...16383

(16K-1)

1 Count (top 6 bits)0

128 – 16383:

single octet
length

encoding
0 Count (7 bits) 0...127

0 – 127:

15

PER: General length determinant (if length is NOT constrained!!)

fragmen-
tation

Length determinant, any of the three forms

(exactly 16384,
32768, 49152

or 65536 pieces
of values)

1 Number of 16K fragments1

16K, 32K, 48K or 64K of data

(bits, fragment of the iteration

number or number of

characters, octets)

only values 1..4
are allowed, other

numbers are illegal!

• From 16384:

• If still not enough:

No. of 16K fragm. (=4)1 64K data fragm.1 No. of 16K fragm. (1-4)1 data fragm.1 ...

17

PER: General length determinant:

where to use

 Always used for:
– semi-constrained types

– unconstrained types

– in extensible types for values out of the root range

 Counts
– BITs for BIT STRING

– CHARACTERs for known-multiplier character string types

– ITERATIONs for SEQUENCE OF and SET OF

– OCTETs in all other cases

 In aligned PER: always octet aligned!

18

PER Restricted Length

 Length encoded in minimal possible length as unsigned

integer

 IA5String(SIZE(6400)) – no length (1 combination!!)

 If length can have 2..256 different values

– IA5String(SIZE(3..6)) – length 2 bit (4 combinations)

– IA5String(SIZE(40000..40254) – length 8 bit (255

combinations)

 If length 257..64k – always 2 octets

– IA5String(0..32000) – length 2 octets

19

PER: NULL, BOOLEAN

 NULL: just nothing

(to be formal: encoded by a zero length field)

 BOOLEAN: just one bit

(as normally would be expected for a single digital number)

20

PER: INTEGER -1

 Constrained non-extensible subtype, value range  255 (!)
– Finite upper and lower bounds and the constraint is PER-visible
– Number of bits are defined based on the RANGE

(upper bound - lower bound + 1)
– The OFFSET from the lower bound is encoded!

sample18 INTEGER (OutRange EXCEPT InRange) ::= 15

OutRange ::= INTEGER (8 .. 39)

InRange ::= INTEGER (16 .. 21)

(RANGE=32)

sample19 INTEGER (0 | 7 | 31) ::= 7

(RANGE=32)

0 0 1 1 1 encoding of the value
into a bitfield (for both examples)

21

PER: INTEGER -1/b

 value range  255 (!)

0 0 1 1 1 encoding of the value
into a bitfield

sample20 INTEGER (0 .. 31, …, 63) ::= 7

 Constrained extensible subtype or extended constrained
subtype and the actual value is within the root

0

extension bit

no padding bits!

22

 ,
constrained extensible subtype or constrained extended subtype
and the actual value is within the root

 Constrained non-extensible subtype (no extension bit)

value range (v.r.)  256 (!)

sample21 INTEGER (0 .. 255) ::= 7

PER: INTEGER -2

encoding of the value
into a minimum number
of octet(s)

v.r. = 256 -> 1 octet
256 < v.r.  64K -> 2 octets
etc.

PPPP 0 0 0 0 0 1 1 1

ALIGNED PER:
0..7 padding bits

octet boundary

, …, 1023

0

extension bit

23

PER: INTEGER -3

 Unconstrained extensible subtype or extended constrained
subtype and the actual value is within the root

sample23 INTEGER (MIN .. 2047) ::= -1023

 Unconstrained non-extensible type
– no finite LOWER bound
– length is in octets and absolute value is encoded -> min. possible

length is mandatory
– value is encoded as signed number -> 2’s complement

octet boundary

encoding of the value into a mi-
nimum number of octet(s)

PP 11111100

ALIGNED PER:
0..7 padding bits

0000000100000010

length
determinant


, …, 4095

0
extension bit

24

PER: INTEGER -4

sample25 INTEGER (1 .. MAX) ::= 1023

 Semi-constrained non-extensible type
– finite LOWER bound, but no definite upper bound
– coding format like the unconstrained type (padding-length-value) BUT
– in the value the OFFSET from the lower bound is encoded

 Extended constrained subtype and the actual value is within the
root

ALIGNED PER:
0..7 padding bits

encoding of the value into a mi-
nimum number of octet(s)

PP 00000011

octet boundary

1111111000000010

length
determinant


, …, -4095 .. -1

0
extension bit

1022 !!

25

PER: INTEGER -5

sample27 INTEGER (0 .. 255, …, -1023..-1) ::= -7

 ALL extended subtypes when the actual value is within the
extended range
=> extension bit = 1, otherwise the encoding is identical to the
unconstrained type
– always the signed absolute value is encoded in 2’s complement!

encoding of the value into a
minimum number of octet(s)

PPPP 11111001

ALIGNED PER:
0..7 padding bits

octet boundary

00000001

length
determinant

1
extension bit

26

PER: CHOICE -1

sample28 CHOICE { string OCTET STRING,
value1 [0] INTEGER (0..15) ,
value2 INTEGER (0..7)

} ::= value2 : 5

 Non-extensible type
– First step: inner choices are arranged in ascending tag order

(remember:
INTEGER -> (0,2), OCTET STRING ->(0,4), context-spec. tag [0]-> (3,0)

– CHOICE s are virtually re-numbered from 0 up
– Then the choice index is encoded just as a constrained integer!

1 0 10 0

choice index encoding of the chosen inner type

0

extension bit

... ,
flag BOOLEAN, ~~~

 Extensible type without extended values or the chosen
option is within the root

27

PER: Normally small non-negative whole number

This procedure is used when encoding a non-negative whole

number that is expected to be small, but whose size is

potentially unlimited due to the presence of an extension

marker. An example is a choice index.

n >= 64: starts by 1 (represented in 1 bit),

encoded as a semi-constrained (0..maxlength)

non-negative INTEGER (length + value)

PP 0 0000001

ALIGNED PER:
0..7 padding bits

octet
boundaryNormally small non-negative

whole number marker   

(=semi-constra-
ined integer !)

010000001

0 xxxxxx0 <= n <= 63:

28

PER: CHOICE -2

 Extensible type, the number of added choices is  63
and the chosen option is out of the root
– for extended values field numbering is re-started from 0
– choice index = “normally small non-negative whole number”

sample29 CHOICE { string OCTET STRING,
value1 INTEGER (0..7) ,
value2 [0] INTEGER (0..15),
…,
flag BOOLEAN,
value3 [1] INTEGER (0..15) } ::= value3 : 7

choice index -> normally small
non-negative whole number

encoding of the chosen inner
type using length indication !

1

7 bits!

0000011100000001

length
determinant

  

0 000001

marker



extension bit

29

PER: CHOICE -3

 Extensible type, the number of added choices is > 63
and the chosen option is out of the root

sample30 CHOICE { string OCTET STRING,
value1 INTEGER (0..7) ,
value2 [0] INTEGER (0..15),
…,
flag BOOLEAN,
~~~

<64th added choice> value3 [1] INTEGER (0..15) }      ::=  value3 : 7

PP

choice index
value

0 0000001

length determi-
nant for the
choice index

ALIGNED PER:
0..7 padding bits

octet
boundary

encoding of the chosen inner
type using length indication !

00000111

length determinant
of the inner type

  

norm.small non-neg.
whole number marker

extension bit

  

(=semi-constra-
ined integer !)

0 0000001010000001 1



30

PER: ENUMERATED

sample31 ENUMERATED { first (2), second (-5), third (9)       }       ::= second

 Always constrained from the lower and upper bounds!

 Enumeration index =>Encoded exactly as the choice index
– Enumerations are re-arranged according to assigned values in 

increasing order and virtually re-numbered from 0 up
– Then just encoded as a constrained integer
– In the sample below the order and encoded values will be:

second ->0, first -> 1, third ->2

0  0

enumeration index

- for extensible types: extension bit is added; if value is in the root:
e.bit = 0, coding = as with the non-extensible type; if value is out of the 
root: e.bit = 1, coding = normally small non-negative whole numbers

0
extension bit

, …



31

PER: BIT STRING & OCTET STRING - 1

octet boundary

PPP

ALIGNED PER:
0..7 padding bits

1010101010101010

length
determinant

00010000

 Unconstrained type

– general length encoding is used (which is always octet aligned)

– length determinant indicates:
no. of bits for BIT STRING &
no. of octets for OCTET STRING

sample37  BIT STRING ::= ’AAAA’H

sample38  OCTET STRING ::= ’AAAA’H

PPP 101010101010101000000010



32

PER: BIT STRING & OCTET STRING  - 2

sample32  BIT STRING (SIZE(  6)        )       ::= '101010’B

 If length is constrained to a single value, non-extensible length
constraint
– No length is encoded if length  64 K;

if length > 64 K, constraint is not PER-visible (->general length encoding)

– ALIGNED PER: single size strings  < 16 bits are unaligned,
 16 bits are octet aligned

 Length is constrained to a single value, extensible length
constraint

101010

, ...

, ...

0
extension bit

1 '1010101010

sample33  OCTET STRING (SIZE(2)       )  ::= ’AAAA’H

PPP

ALIGNED PER:
0..7 padding bits

octet boundary

1010101010



33

PER: BIT STRING & OCTET STRING  - 3

 Length is constrained to a range & non-extensible

– Upper bound  64 K: length is encoded as a constrained integer;
(unaligned length field up to and including 255, octet aligned <for 
ALIGNED PER> octet field above 255, no “length of length”)
-> bits for BIT SRING, octets for OCTET STRING 

– Upper bound > 64K -> constraint is not PER visible 
(length is encoded using the appropriate general length form)

sample34  BIT STRING (SIZE(0..7)      ) ::= 000001'B

 Length is extensible or extended & within the root
– extension bit = 0 is added, coding is as with the non-extensible type

encoding of the valuelength determinant
(always 3 bits for this subtype)

111 00000010
extensi-

bility bit

, ...



34

PER: BIT STRING & OCTET STRING  - 4

 Length is constrained, actual length is out of the root

– extension bit = 1

– general length encoding is used (which is always octet aligned)

– length determinant indicates no. of bits

sample35  BIT STRING (SIZE(0 ..6), …, SIZE (7..31)) ::= ’AAAA’H

sample36  OCTET STRING (SIZE(0 ..1), …, SIZE (2..4))        ::= ’AAAA’H

extension bit

octet boundary

PPP 1010101010101010000100001

ALIGNED PER:
0..7 padding bits

length
determinant

“..1..0..” for the BIT STRING example,
“..0..1..” for the OCTET STRING example



35

PER: SEQUENCE & SET - 1

 SET

– Reordered to a canonical order using distinct tags

– Encoded identically as SEQUENCE

 SEQUENCE, non-extensible

– If no OPTIONAL/DEFAULT fields: just the list of the fields

– If OPTIONAL/DEFAULT fields: starts by an „optional bitmap”: one bit 
for each OPTIONAL or DEFAULT element

– Optional bitmap  64 K : always unaligned, without length indication

– Optional bitmap > 64 K : fragmented using general length indication

sample40   SEQUENCE{
first INTEGER (0..15)  OPTIONAL,
second    INTEGER (0..15),
third        BOOLEAN           OPTIONAL}  ::= { second 10, third TRUE }

101001 encoding of inner typesbitmap
1



36

PER: SEQUENCE & SET - 2

 SEQUENCE, extensible type
– No additional elements within the actual sequence: extension bit = 0

sample41       SEQUENCE{
first INTEGER (0..15)   OPTIONAL,
second INTEGER (0..15),
third    BOOLEAN              OPTIONAL,       …,

} ::= { second 10, third TRUE }
fourth  INTEGER (0..7),
fifth     BOOLEAN        OPTIONAL , fourth 7, fifth TRUE 

– Extension bit = 1 if there is/are additional element(s) 

– Additional bitmap is added at the insertion point: one bit for EACH 
additional element, number of bits counted by a normally small non-
negative whole number; “1” for each element present

– EACH additional element uses a general length field -> counts in octets!

extensi-
bility bit

0 1010

bitmap

01 11 0000010

additional bitmap

11

no. of bits in the bitmap
(norm.small non-neg.
whole number)

00000111 1PPPPPPPP

ALIGNED PER: 0.. 7 padding bits

length determinants for each
new element, counts in octets!

0000000100000001



37

PER: SEQUENCE & SET - 3

 Version brackets
– Allows to use a single length wrapper for all additional elements
– Allows optimized coding for additional elements
– Elements within the version bracket are encoded as a SEQUENCE, 

e.g. adding another extension bit and optional bitmap, if appropriate

sample42   SEQUENCE{
first INTEGER (0..15)  OPTIONAL,
second INTEGER (0..15),
third BOOLEAN            OPTIONAL, …,
[[ fourth INTEGER (0..7),

fifth BOOLEAN            OPTIONAL]] }

::= { second 10, third TRUE, fourth 7, fifth TRUE }

101001

bitmap
of the root

1

extension bit

01 0000001 P1

ALIGNED PER: 0.. 7 padding bits

single length determinant
for new elements

PPP

additional bitmap

00000001 111 11

“normal” PER coding for elements
inside the version bracket
(incl. bitmap for inner optional el.s)

  



38

PER: SEQUENCE OF & SET OF

 Only an iteration count is added

– Encoding of the iteration count is the same as the length field of 
strings in all the cases
Shows the number of iterations

– Extension marker can be added both to the outer or to the inner type

sample43   SEQUENCE (SIZE (0..7)) OF INTEGER (0..15) ::= {10, 6, 9 }

1010

iteration count

011

encoding of values
of the inner type

0110 1001



39

PER: Character string types - 1

 Known-multiplier character string types

– IA5String, PrintableString, VisibleString (ISO646String), NumericString, 

UniversalString and BMPString

– Number of bits/character in the set is FIXED and a priori known

– Length determinant counts number of characters!

– Effective size and effective character constraints shall be identified 

separately

– Fixed length constraint:

IF length of the string < 2octets -> unaligned;

IF length   2 octets, the string is octet aligned

– Range constraint: 

IF the total length (length bits + all characters) NEVER exceeds 2 octets

-> unaligned;

String ::= IA5String (SIZE( 0..6) FROM(“A”..”D”)) max length: 3+ 6*2 bits

IF it can exceed 2 octets -> ALWAYS aligned
length
field

max. no
of chars.

bits per
char.



40

PER: Character string types - 2

 Known-multiplier character string types, defining effective size and 
effective alphabet constraints

– effective size constraint : max length in subtype - min length in subtype

– effective alphabet constraint: set of all characters in subtype

– interrelation of length and characters of individual strings are 
indifferent

String  ::= IA5String (SIZE (0..3) ^ FROM ("A"..”I") UNION

SIZE (4..7) ^ FROM ("a”.. ”i"))

effective size constraint-> 0 .. 7 '41'H .. ’49’H -> 9 characters

'61'H .. ’69'H -> 9 characters

effective alphabet constraint-> 18 characters



41

PER: Character string types - 4

 Known-multiplier character string types, non-extensible

– calculation of effective size and effective alphabet constraints (0..7, 10)

– calculation of no. of length bits (3) and bits/character (4)

– if no. of bits/char calculated < then no. of bits/char of the unconstrained
type -> re-map characters: new value is zero up based on the canonical 
order in the original character table -> “A”: 0, “B”: 1 … “a”: 5, “b”: 6 ...

string       IA5String (SIZE (0..3) ^ FROM ("A"..”E") UNION

SIZE (4..7) ^ FROM  ("a”.. ”e")       ) ::=”abcd"

effective size constraint-> 0 .. 7 eff.  alph. constraint-> 10 char.

length
determinant

100

encoding of characters
based on re-mapped table

0101 0110 10000111

 Extensible type or extended but actual value is within the root

extension bit
0

, ...



42

PER: Character string types - 3

ALIGNED PER!
N

o
. 

o
f 

c
h

a
r.

s
No. of characters in the effective alphabet constraint

No.bit/character 32 16 8 4 2 1 0

NumericString 11 / 5..11

PrintableString 74 17..74

VisibleString 95 17..95

IA5String 128 17..128

BMPString 65536 257..65536

UniversalString 4E+09 2
16

+1 ..2
32 257..65536

 Characters are coded according to the original table

 Characters are coded according to remapped codes

1

/
/

17..256

5..16
3..4 2

 Number of bits/character in constrained character sets

– in aligned PER: number of bits/char = 2i

– in unaligned PER: number of bits/char = 0..max



43

PER: Character string types - 5

 NOT known-multiplier character string types

– Number of bits/character is variable

– No constraint is PER-visible

– Encoded using general length forms; length identifies no. of octets

– Constraint is not PER-visible -> NEVER an extension bit is added, 
even if the ASN.1 type is extensible!

 Known-multiplier character string types, extended constraint,
actual value is out of the root

– extension bit =1

– No optimized coding for bits/characters
(e.g. IA5String -> 8 bits, UniversalString -> 32 bits)

– General length encoding is used, length indicates characters





Coding
of uncon-
strained

type



45

PER visibility of subtypes Summary

B
it

 S
tr

in
g

B
o

o
le

a
n

C
h

o
ic

e

E
m

b
e

d
d

e
d

-p
d

v

E
n

u
m

e
ra

te
d

E
x
te

rn
a
l

In
s
ta

n
c
e

-o
f

In
te

g
e

r

N
u

ll

O
b

je
c
t 

c
la

s
s
 f

ie
ld

 

ty
p

e

O
b

je
c
t 

Id
e

n
ti

fi
e

r

O
c
te

t 
S

tr
in

g

o
p

e
n

 t
yp

e

R
e

a
l

R
e

la
ti

v
e

 

O
b

je
c
tI

d
e

n
ti

fi
e

r
R

e
s
tr

ic
te

d
 C

h
a
ra

c
te

r 

S
tr

in
g

 T
yp

e
s

S
e

q
u

e
n

c
e

S
e

q
u

e
n

c
e

-o
f

S
e

t

S
e

t-
o

f

U
n

re
s
tr

ic
te

d
 

C
h

a
ra

c
te

r 
S

tr
in

g
 

Single Value Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes

Contained Subtype Yes Yes Yes No Yes No Yes Yes Yes Yes Yes Yes No Yes Yes
Yes 

(1)
Yes Yes Yes Yes No

Value Range No No No No No No No Yes No No No No No Yes No
Yes 

(1)
No No No No No

Size Constraint Yes No No No No No No No No No No Yes No No No
Yes 

(1)
No Yes No Yes Yes

Permitted Alphabet No No No No No No No No No No No No No No No
Yes 

(2)
No No No No No

Type constraint No No No No No No No No No No No No Yes No No No No No No No No

Inner Subtyping No No Yes
Yes 

(3)
No Yes Yes No No No No No No Yes No No Yes Yes Yes Yes

Yes 

(3)

(1)  -  for known-multiplier character types only 

(2)  -  for non-extendable known-multiplier character types only

(3)  -  when an inner type restricts the "syntaxes" to a single value, or when "identification" is restricted to the "fixed" alternative

Yes Subtyping 
applicable

Subtyping
PER-visible


