ERICSSON =

ASN.1: encoding

Gusztav ADAMIS
BME TMIT
adamis@tmit.ome.hu
Gyorgy RETHY, Janos Zoltan SZABO
Test Competence Center, Ericsson Hungary
Sunday, February 26, 2017

.CONFORMANCi
i

ERICSSON =

Contents

PER

Basic principles of PER
PER-visible type constraints (sub-typing)
Encoding of different types

.CONFORMANCi
i

ERICSSON =

PER: Basic principles

® BE AS COMPACT AS REASONABLY POSSIBLE
— bit-oriented where possible
— neither the type nor tag is coded
— use of type constraints where possible to decrease size of message
— always the shortest possible format shall be used

.GONFORMANCi
i

ERICSSON =

PER: Types of PER

Octet alignment Sender options

N N

ALIGNED UNALIGNED Basic-PER Canonical-PER

.CONFORMANCi
i

ERICSSON =

PER:

WHAT THE ENCODING OF A VALUE DEPENDS ON?

The type

PER-visible sub-typing

PER-visible extension marker(s)

OPTIONAL and/or DEFAULT element(s) in the type definition
Tags of the components of complex types (SET, CHOICE)
Whether a component is an open type

If the value of an extensible type is within the root or not
The value itself

CONFORMANCE
Lab

ERICSSON =

PER: Production of the complete encoding

® All inner values are encoded and a field-list created

® Concatenate all fields of the field-list
—without any padding bits for UNALIGNED PER

—adding 0..7 padding bits before any octet-aligned bit fields for
ALIGNED PER

® Append 0..7 zero bits at the end of the whole production to
produce a multiple of 8 bits

® If the result is an empty bit string, replace it with one “0” octet
octet boundary octet boundary octet boundary octet boundary

¥ y
Tbit-field‘PPP‘octet-aIigned bit-field|octet-aligned bit-field‘ bit-field ‘PP"

ALIGNED PER: wd
0..7 padding bits 0..7 zero bits

CONFORMANCE 4 B
i Lab i 7

ERICSSON =

PER: Encoding of open types

® In general (the same way the complete PDU processed)
— The actual type(s) occupying the field is/are encoded into bit fields
— Bit fields are concatenated, with padding bits, where needed
— The production is padded to multiple number of 8 bits

— The whole composite octet string is wrapped by a general length
determinant, which ALWAYS counts in octets

.GONFORMANCi
i

ERICSSON =

PER: Uses subtype constraint at coding
Value Code point
elementl INTEGER(0..7) ::=5 ‘1 0 1‘ 0 000
1 001

| t2 INTEGER(15..22) ::= 20 15 000
slemen () ‘1 0 1‘ 16 001
element3 INTEGER (MIN..7) ::=
element4 INTEGER ::=5 L \%

00000001/[00000101

.CONFORMANCi
i

ERICSSON =

PER: PER visibility of subtypes - 1

® Single value, value list constraint: is visible for INTEGER only
— INTEGER (1]2) => coded as constrained type

— 1ASString (“abc” | “abed”), BIT STRING (‘00°|’11°)
=> coded as unconstrained type

SUMMARY

.GONFORMANCi
i

11

ERICSSON =

PER: PER visibility of subtypes - 1

® Value range constraint: NOT visible for REAL and not known-
multiplier character string types :

INTEGER (0..255) => coded as constrained type

VideotexString (FROM (“a” .. ”2”)) =>coded as unconstrained type

® Known-multiplier character string types:
— IA5String
— PrintableString
— VisibleString
— NumericString
— UniversalString
— BMPString

.CONFORMANCi
i

12

ERICSSON =

PER: PER visibility of subtypes - 2

® Size constraint is NOT visible for not known-multiplier character
string types
SEQUENCE (SIZE (0..63)) OF MyType =>coded as constrained type
IA5String (SIZE (0..63)) => coded as constrained type
VideotexString (SIZE (0..63) => coded as unconstrained type

® Permitted Alphabet is visible ONLY for non-extensible
known-multiplier character string types

IA5String (FROM (“abc”)) => coded as constrained type
IA5String (FROM (“abc”), ...) => coded as unconstrained type
VideotexString (FROM (“abc”)) => coded as unconstrained type

® Type constraint is NEVER PER-visible
iGONngBNCIi

SUMMARY

13

ERICSSON =

PER: General length determinant (if length is NOT constrained!!)
0-127:
single octet
length | 0 | Count (7 bits) I 0...127
encoding
128 — 16383:
two octets | 1 | 0 I Count (top 6 bits) |1 8...16383
ST % (16K-1)
encoding I Count (bottom 8 bits)

.GONFORMANCi
i

14

ERICSSON =

PER: General length determinant (if length is NOT constrained!!)

e From 16384:

I‘/ only values 1..4
are allowed, other
numbers are illegal!

I 1 I 1 I Number of 16K fragments

16K, 32K, 48K or 64K of data

(bits, fragment of the iteration
number or number of

characters, octets

«~ (exactly 16384,
32768, 49152
or 65536 pieces
of values)

fragmen-
tation

I Length determinant, any of the three forms I

« If still not enough:

1 I\Io. of 16K fragm. (:4i 64K data fragm. I 1 I 1 I\Io. of 16K fragm. (1-4] data fragm. I

CONFORMANCE
Lab

ERICSSON =

PER: General length determinant:
where to use

® Always used for:
— semi-constrained types
—unconstrained types
—in extensible types for values out of the root range

® Counts
— BITs for BIT STRING
— CHARACTERS for known-multiplier character string types
— ITERATIONSs for SEQUENCE OF and SET OF
— OCTETs in all other cases

® In aligned PER: always octet aligned!

.GONFORMANCi
i

17

ERICSSON =

PER Restricted Length

® Length encoded in minimal possible length as unsigned
Integer

® |A5String(SIZE(6400)) — no length (1 combination!!)

® |f length can have 2..256 different values
— IA5String(SIZE(3..6)) — length 2 bit (4 combinations)

— IA5String(SIZE(40000..40254) — length 8 bit (255
combinations)

® If length 257..64k — always 2 octets
— IA5String(0..32000) — length 2 octets

CONFORMANCE
Lab

ERICSSON =

PER: NULL, BOOLEAN

® NULL: just nothing
(to be formal: encoded by a zero length field)

® BOOLEAN: just one bit
(as normally would be expected for a single digital number)

.CONFORMANCi
i

19

ERICSSON =

PER: INTEGER -1

® Constrained non-extensible subtype, value range <255 (!)
— Finite upper and lower bounds and the constraint is PER-visible
— Number of bits are defined based on the RANGE
(upper bound - lower bound + 1)
— The OFFSET from the lower bound is encoded!

samplel8 INTEGER (OutRange EXCEPT InRange) = 15
OutRange ::= INTEGER (8 ..39)
InRange ::=INTEGER (16 ..21)
(RANGE=32)
samplel9 INTEGER (0] 7| 31) =
(RANGE=32)

00111 |v\encod|ng of the value
Into a bitfield (for both examples)

.CONFORMANCi
i

20

ERICSSON =

PER: INTEGER -1/b

® value range <255 (!)

® Constrained extensible subtype or extended constrained
subtype and the actual value is within the root

sample20 INTEGER (0..31,...,63) =7

extension bit ~

L ‘ ‘O 0111 |v\encod|ng of the value
no padding bits! into a bitfield

.CONFORMANCi
i

21

ERICSSON =

PER: INTEGER -2

® Constrained non-extensible subtype (no extension bit),
constrained extensible subtype or constrained extended subtype
and the actual value is within the root
value range (v.r.) > 256 (!)

sample2l INTEGER (0 .. 255, ...,1023) =7
o octet boundary encoding of the value
extension bit < Y into a minimum number
lo|PPPP[000002 1 1] Of octet(s
~ v.r. =256 -> 1 octet
ALIGNED PER: 256 < v.r. £ 64K -> 2 octets
0..7 padding bits etc.

.GONFORMANCi
i

22

ERICSSON =

PER: INTEGER -3

® Unconstrained non-extensible type
—no finite LOWER bound
—length is in octets and absolute value is encoded -> min. possible
length is mandatory
—value is encoded as signed number -> 2’s complement

® Unconstrained extensible subtype or extended constrained
subtype and the actual value is within the root

sample23 INTEGER (MIN .. 2047, ..., 4095) .= -1023
octet boundary

o v
extension bit ~{o]7PJoooooo10{11111100]00000001}

\\

”
ALIGNED PER: length encoding of the value into a mi-
0..7 padding bits determinant nimum number of octet(s)

CONFORMANCE
Lab

ERICSSON =

PER: INTEGER -4

® Semi-constrained non-extensible type
— finite LOWER bound, but no definite upper bound
— coding format like the unconstrained type (padding-length-value) BUT
—in the value the OFFSET from the lower bound is encoded

® Extended constrained subtype and the actual value is within the

root
sample25 INTEGER (1 .. MAX, ...,-4095..-1) .= 1023
octet lioundary
extension bit
~{o] PP |ooooo010f00000012|12112110[~ 1022t
~ -~ - g g : :
ALIGNED PER: length encoding of the value into a mi-
0..7 padding bits determinant nimum number of octet(s)

.GONFORMANCi
i

24

ERICSSON =

PER: INTEGER -5

® ALL extended subtypes when the actual value is within the
extended range
=> extension bit = 1, otherwise the encoding is identical to the

unconstrained type
—always the signhed absolute value is encoded in 2’s complement!

sample27 INTEGER (0 .. 255, ..., -1023..-1) = 7

octet boundary

¥
extension bit
~=[1{~Prr|ooo0000111111001]
”
ALIGNED PER: Ieﬁ'gth enva)ding of the value into a
0..7 padding bits determinant minimum number of octet(s)

CONFORMANCE
Lab

ERICSSON =

PER: CHOICE -1

® Non-extensible type
— First step: inner choices are arranged in ascending tag order

(remember:
INTEGER -> (0,2), OCTET STRING ->(0,4), context-spec. tag [0]-> (3,0)

— CHOICE s are virtually re-numbered from 0 up

— Then the choice index is encoded just as a constrained integer!
® Extensible type without extended values or the chosen

option is within the root

sample28 CHOICE { string OCTET STRING,
valuel [O] INTEGER (0..15)
value2 INTEGER (0..7)
flag BOOLEAN, ~~~ } = value2:5
extension bit
lofoof1 01
choice index =~ v\encoding of the chosen inner type

E=CONFORMANCEE=
- Lab 1. 26

ERICSSON =

PER: Normally small non-negative whole number

This procedure is used when encoding a non-negative whole
number that is expected to be small, but whose size is
potentially unlimited due to the presence of an extension
marker. An example is a choice index.

0<=n=<=63: ‘O‘ XXXXXX ‘

n >= 64 starts by 1 (represented in 1 bit),
encoded as a semi-constrained (0..maxlength)

non-negative INTEGER (length + value)

: octet (=semi-constra-
Normally small non-negative houndary ined integer 1)
whole number markersg A

[_\

2] PP [0 0000001 | 02000000 |

~
ALIGNED PER:
0..7 padding bits

CONFORMANCE
— Lab = 27

ERICSSON =

PER: CHOICE -2

® Extensible type, the number of added choices is <63
and the chosen option is out of the root
— for extended values field numbering is re-started from O
— choice index = “normally small non-negative whole number”

sample29 CHOICE{ string OCTET STRING,
valuel INTEGER (0..7)
value2 [0] INTEGER (0..15),
flag BOOLEAN,
value3 [1] INTEGER (0..15)} ::= value3d:.7

encoding of the chosen inner

' indication !
marker 7 pi YPEUSING length indication !

AL
extension bit ~f1 [0 0g0002{00000001 (00000111
— ,
choice index -> normally small ™ length
non-negative whole number determinant

.CONFORMANCi
i

28

ERICSSON =

PER: CHOICE -3

® Extensible type, the number of added choices is > 63
and the chosen option is out of the root

sample30 CHOICE { string OCTET STRING,
valuel INTEGER (0..7)
value2 [0] INTEGER (0..15),
flag BOOLEAN,
<64th added choice> value3 [1] INTEGER (0..15)} ::= value3 .7
I octet (=semi-constra- encoding of the chosen inner
norm.smaill non-neg. boundary ined integer) type using Iength Indication !

whole number marker\

[

extension bit~uf 141 pp {0 0000001\01000000 0 0000001\00000111

~
ALIGNED PER: Iengt(eterml- ChO/I(;e index ™ length determinant
0..7 padding bits nant for the value of the inner type
choice index

.CONFORMANCi
i

29

ERICSSON =

PER: ENUMERATED

® Always constrained from the lower and upper bounds!

® Enumeration index =>Encoded exactly as the choice index
— Enumerations are re-arranged according to assigned values in
increasing order and virtually re-numbered from O up
— Then just encoded as a constrained integer
—In the sample below the order and encoded values will be:
second ->0, first -> 1, third ->2

- for extensible types: extension bit is added; if value is in the root:
e.bit =0, coding = as with the non-extensible type; if value is out of the
root: e.bit =1, coding = normally small non-negative whole numbers

sample31 ENUMERATED { first (2), second (-5), third (9), ...} .:=second

extension bit\l O‘ 00 ‘

enumeration index <~

CONFORMANCE
T Lab 5 30

ERICSSON =

PER: BIT STRING & OCTET STRING -1

® Unconstrained type
—general length encoding is used (which is always octet aligned)

—length determinant indicates:
no. of bits for BIT STRING &
no. of octets for OCTET STRING

sample37 BIT STRING .= 'AAAA’H
octet i)oundary
\;PP‘OOOlOOOO‘1010101010101010‘
ALIGNED PER: N length
0..7 padding bits determinant
sample38 OCTET STRING .= ’AAAA’H

PPP(00000010{1010101010101010)|

.GONFORMANCi
i

31

ERICSSON =

PER: BIT STRING & OCTET STRING - 2

® If length is constrained to a single value, non-extensible length

constraint

— No length is encoded if length £ 64 K;
If length > 64 K, constraint is not PER-visible (->general length encoding)

— ALIGNED PER: single size strings < 16 bits are unalighed,
> 16 bits are octet alighed

® Length is constrained to a single value, extensible length

constraint
sample32 BIT STRING (SIZE(16), ...) >= '1010101010101010’B
sample33 OCTET STRING (SIZE(2), ...) ::= ’AAAA’H
octet Iioundary
extension bit
\|E|Ppp|101010101010101o|
ALIGNED PER:”

0..7 padding bits
GONFORMANC_
= = 2

ERICSSON =

PER: BIT STRING & OCTET STRING -3

® Length is constrained to arange & non-extensible

— Upper bound <64 K: length is encoded as a constrained integer;

(unaligned length field up to and including 255, octet aligned <for
ALIGNED PER> octet field above 255, no “length of length”)

-> pits for BIT SRING, octets for OCTET STRING

— Upper bound > 64K -> constraint is not PER visible
(length is encoded using the appropriate general length form)

® Length is extensible or extended & within the root
— extension bit =0 is added, coding is as with the non-extensible type

sample34 BIT STRING (SIZE(0..7), ...) ::= 000001'B

extensi—\A
bility bit 111{0000001
length determinant encading of the value

(always 3 bits for this subtype)

CONFORMANCE
T Lab = 33

ERICSSON =

PER: BIT STRING & OCTET STRING -4

® Length is constrained, actual length is out of the root
— extension bit =1

—general length encoding is used (which is always octet aligned)

sample35 BIT STRING (SIZE(0 ..6), ..., SIZE (7..31)) = 'AAAA’H
sample36 OCTET STRING (SIZE(0 ..1), ..., SIZE (2..4)) 'AAAA’H

octet boundary “..1..0..” fOl‘ the BIT STRING example,

1 ‘..0..1..” for the OCTET STRING example
extension bit
1P
ALIGNED PER: length
0..7 padding bits determinant

.CONFORMANCi
i

34

ERICSSON =

PER: SEQUENCE & SET -1

® SET
— Reordered to a canonical order using distinct tags
— Encoded identically as SEQUENCE

® SEQUENCE, non-extensible
— If no OPTIONAL/DEFAULT fields: just the list of the fields

— If OPTIONAL/DEFAULT fields: starts by an ,,optional bitmap”: one bit
for each OPTIONAL or DEFAULT element

— Optional bitmap <64 K : always unaligned, without length indication
— Optional bitmap > 64 K : fragmented using general length indication

sample40 SEQUENCE{

first INTEGER (0..15) OPTIONAL,
second INTEGER (0..15),
third BOOLEAN OPTIONAL} ::={second 10, third TRUE }

bitmap 7 ‘01‘ LO10} 1™ encoding of inner types
.GONFORMANCi
i

35

ERICSSON =

PER: SEQUENCE & SET -2

® SEQUENCE, extensible type
— No additional elements within the actual sequence: extension bit =0
— Extension bit = 1 if there is/are additional element(s)

— Additional bitmap is added at the insertion point: one bit for EACH
additional element, number of bits counted by a normally small non-
negative whole number; “1” for each element present

— EACH additional element uses a general length field -> counts in octets!

sample4dl SEQUENCE({
first INTEGER (0..15) OPTIONAL,
second INTEGER (0..15),
third BOOLEAN OPTIONAL, .
fourth INTEGER (0..7),
fith BOOLEAN OPTIONAL} ::={ second 10, third TRUE, fourth 7, fifth TRUE}

no. of bits in the bitmap length determinants for each

extensi- (norm.small non-neg. :
bility bit Wwhole number) neW element, Counts In octets!

\\ 10z 101¢[1 ‘0000010‘11|_PPOOOOOO]IOOOOOlllPOOOOOO]llPPPPPPP'

bitmap”” additional bitmap”” "~ ALIGNED PER: 0.. 7 padding bits
iCONF‘BzMBNCT
i i

36

ERICSSON =

PER: SEQUENCE & SET -3

® \ersion brackets

— Allows to use a single length wrapper for all additional elements

— Allows optimized coding for additional elements

— Elements within the version bracket are encoded as a SEQUENCE,
e.g. adding another extension bit and optional bitmap, if appropriate

sample42 SEQUENCE{

first INTEGER (0..15) OPTIONAL,
second INTEGER (0..15),
third BOOLEAN OPTIONAL, ...,
[[fourth INTEGER (0..7),

fifth BOOLEAN OPTIONAL]] }

.:={second 10, third TRUE, fourth 7, fifth TRUE }

“normal” PER coding for elements
single length determinant inside the version bracket

extenS|on bit for new elements N (|ncl bitmap for inner optional el.s)

‘ lo2| 1010 1 |oooooo1|1 ‘PbOOOOOO]l l111]1 ‘PPP‘

ofbgﬁ??g({ additional b,tmap/ "\ ALIGNED PER: 0.. 7 padding bits
iGONF'ORMANCEi
T Lab 5

37

ERICSSON =

PER: SEQUENCE OF & SET OF

® Only an iteration count is added

— Encoding of the iteration count is the same as the length field of
strings in all the cases
Shows the number of iterations

— Extension marker can be added both to the outer or to the inner type

sample43 SEQUENCE (SIZE (0..7)) OF INTEGER (0..15) ::= {10, 6, 9}

. 101o|0110 ‘ 1001

iteration count encoding of values
of the inner type

.CONFORMANCi
i

38

ERICSSON =

PER: Character string types - 1

® Known-multiplier character string types

— IA5String, PrintableString, VisibleString (ISO646String), NumericString,
UniversalString and BMPString

— Number of bits/character in the set is FIXED and a priori known
— Length determinant counts number of characters!

— Effective size and effective character constraints shall be identified
Sseparately

— Fixed length constraint:
IF length of the string < 2octets -> unaligned,;
IF length > 2 octets, the string is octet aligned
— Range constraint:
IF the total length (length bits + all characters) NEVER exceeds 2 octets
-> unalighed;
String ::= IA5String (SIZE(0..6) FROM(“A”..”D”)) max length: 3+ 6*2 bits
IF it can exceed 2 octets -> ALWAYS aligned

length max. no bits per
field of chars. char.

.GONFORMANCi
i

39

ERICSSON =

PER.: Character string types - 2

® Known-multiplier character string types, defining effective size and
effective alphabet constraints

— effective size constraint : max length in subtype - min length in subtype
— effective alphabet constraint: set of all characters in subtype

—interrelation of length and characters of individual strings are
Indifferent

@ivesize constr@ '41'H .. >49°H -> 9@

String ::=1A5String (SIZE (0..3) » FROM ("A"..”I") UNION
SIZE (47) N FROM ("a”“ ui"))

'61'H .. *69'H -> 9 characters >

effective alphabet constraint-> 18 characters

.GONFORMANCi
i

40

ERICSSON =

PER: Character string types -4

® Known-multiplier character string types, non-extensible
— calculation of effective size and effective alphabet constraints (0..7, 10)
— calculation of no. of length bits (3) and bits/character (4)

—if no. of bits/char calculated < then no. of bits/char of the unconstrained
type ->re-map characters: new value is zero up based on the canonical
order in the original character table -> “A”: 0, “B”: 1 ... “a”: 5, “b”: 6 ...

® Extensible type or extended but actual value is within the root

@e constr@ eff. alph. constrain@

string IA5String (SIZE (0..3) » FROM ("A"..”E") UNION
SIZE (4..7)» FROM ("a”..”e"). ...) ::="abcd"

extension bit \‘ 0 ‘ 100 ‘ 0101 ‘ 0110 ‘ 0111 ‘ 1000 ‘

I;}gth encoding of characters
determinant based on re-mapped table

CONFORMANCE
— Lab = 41

ERICSSON =

PER: Character string types - 3

® Number of bits/character in constrained character sets

—in aligned PER: number of bits/char = 2!
—in unaligned PER: number of bits/char = 0..max

S @

ALIGNED PER! | & g__? No. of charactersin the effective alphabet constraint
Z O

No.bit/character 32 16 8 4 2 1 0

NumericString 11 / 5..11

PrintableString 74 / 17..74

VisibleString 95 / 17..95

IA5String 128 17..128| 5 15 | 34 2 1

BMPString 65536 257..65536 -

. . 17..25
UniversalString |4E+09 216+1 __232 257..65536

Characters are coded according to remapped codes

Characters are coded according to the original table

CONFORMANCE
Lab

ERICSSON =

PER: Character string types - 5

® Known-multiplier character string types, extended constraint,
actual value is out of the root

— extension bhit =1

— No optimized coding for bits/characters 1 O?Sﬁ(i:g%_
(e.g. IA5String -> 8 bits, UniversalString -> 32 bits) . strained

— General length encoding is used, length indicates charactersJ type

® NOT known-multiplier character string types
— Number of bits/character is variable
— No constraint is PER-visible
— Encoded using general length forms; length identifies no. of octets

— Constraint is not PER-visible -> NEVER an extension bit is added,
even if the ASN.1 type is extensible!

CONFORMANCE
Lab

ERICSSON =

PER visibility of subtypes

Summary

)

. = — 5
ves | Subtyping 2 s | O T8 o . £
applicable o s |3 5 = || 2| o == ol o | © 9 S
c (8|8 |z |B|8|alb o |E|S |2 CEc g elg - |5 &
clo|lC|lo|=|SE|o|lS|l=R8ByYye|ma|l22|sEadols |88l =
Subtyping |2 |8 |s |3 |E|x|S|2|Z L5 |8|o|xpge |3 |8|83
PER-visible |3 |2 || & |2 (d|2|=| [|8|8|2| EFIsE(Q|T £ 5
E | Ww = = = | © a=s n N - g

LLl @) Olwn
O O)

o
Single Value Yes|Yes|Yes| Yes |Yes|Yes|Yes|Yes|Yes|Yes|Yes|[Yes| No [Yes|Yes| Yes |Yes|Yes|Yes|Yes| Yes
Contained Subtype |[Yes|Yes|Yes| No [Yes| No [Yes|Yes|Yes|Yes|Yes|Yes| No [Yes|Yes \Ef)s Yes|Yes|Yes|Yes| No
Value Range No [No| No [No | No | No | No |Yes| No| No| No | No | No |Yes| No \Ef)s No | No | No | No | No
Size Constraint Yes| No | No| No | No| No | No | No [No | No | No | Yes| No [No | No \Ef)s No | Yes| No | Yes| Yes
Permitted Alphabet | No | No | No | No [No [No | No | No | No [No | No | No | No | No | No \ES)S No | No [No | No | No
Type constraint No | No| No| No | No| No| No| No| No| No| No| No |Yes| No| No| No [No [No [No [No [No
. Yes Yes
Inner Subtyping No [No | Yes 3) No | Yes|Yes| No| No| No| No| No | No |Yes| No| No [Yes|Yes|Yes|Yes 3)

(1) - for known-multiplier character types only
(2) - for non-extendable known-multiplier character types only
(3) - when an inner type restricts the "syntaxes" to a single value, or when "identification" is restricted to the "fixed" alternative

CONFORMANCE
Lab

45

