

C-V2x Intelligent Transportation Systems

Rolland Vida

IEEE 1609.x

- IEEE 1609.2 security services
- IEEE 1609.3 management services
 - Channel usage monitoring
 - Received channel power indicator (RCPI)
 - Management parameters
- IEEE 1609.4 QoS and multi-channel access
 - User Priorities mapped to Access Categories in EDCA
 - Multi-channel access for single radio 802.11p devices

IEEE 1609.4 channel swithcing

- 7 FDMA channel frequencies
- Multi-channel radios can send and receive over several channels simultaneously
 - Might have problems with interferences between channels
- Single channel radios to access both CCH and SCH
 - Either transmit or receive on a single 10 MHz channel
- Alternating access
 - Repetitive periods of 100 ms
 - 46 ms allocated to the CCH channel
 - 46 ms allocated to the SCH channels
 - 4 ms guard interval for switching between CCH and SCH
 - Nodes should wait for a random backoff after the end of the guard interval, before starting to transmit
 - Time synchronisation needed to an external time reference
 - Coordinated Universal Time (UTC) from GPS or other devices
 - WAVE Time Advertisement (WTA) frame

IEEE 1609.4 channel switching

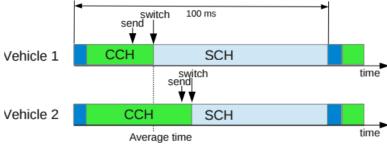
Continuous access

- Transmission can be continuous on the CCH and all SCHs
- It cannot be guaranteed that all other stations will listen to the CCH outside the CCH slot
- Safety messages sent over the CCH in the SCH slot might be ineffective
- The usage of SCH not efficient if nodes listen to the CCH 50% of the time
- Alternative solutions to minimise the impact of channel switching?

IEEE 1609.4 channel switching

Immediate access

- The node does not have to wait until the CCH slot is over
- After the CCH transmission is over, switch to SCH
- Improve the performance of bandwidth-demanding non-safety applications in SCH, at the expense of the CCH


Extended access

Transmission on the SCH without waiting for the CCH

Adaptive Independent Channel Switching

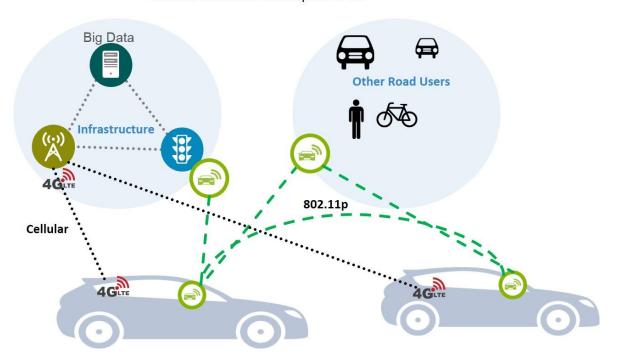
- If more vehicles, more beacons on the CCH
- Nodes can change their average switching time based on vehicle density
 - Long SCH intervals if not many vehicles
 - Fewer collisions at the start of the SCH, as nodes switch independently of each other
- Drawback is that not all nodes on the CCH in the same time
 - Vehicle 1 will miss the beacon of Vehicle 2

IEEE 1609.4 channel switching

Fragmentation

- To better utilise the residual time at the end of the SCH interval
- An extra fragmentation header should be used, which is a drawback
- Works for large packets (TCP)

Best-fit scheme


- Send the packet that best fits the residual time at the end of the SCH interval
 - Better than fragmentation only if packets of different sizes are present in the queue
- Hard to know in advance the actual duration of transmission
 - Frequent changes in the channel congestion
 - Stochastic nature of backoff

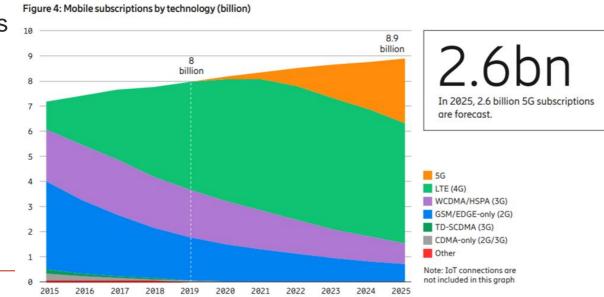
802.11p or C-V2x?

- Requirements for Cooperative ITS systems
 - High relative speeds between transmitters and receivers
 - Extremely low latency in safety-related applications (<50 ms)
 - Tolerate high load generated by periodic transmission of multiple messages, and high vehicle density
 - V2x messages are mostly local in nature, are important for nearby receivers

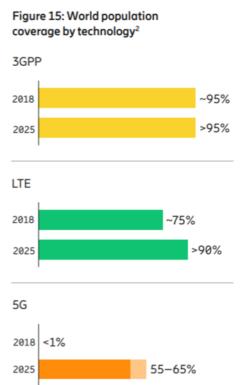
Cellular and IEEE 802.11p for C-ITS

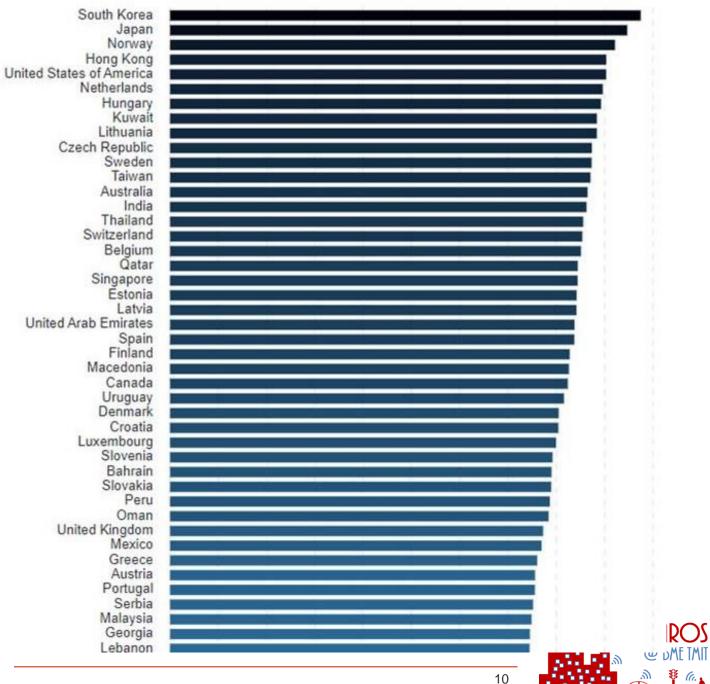
802.11p or C-V2x

- 802.11p is here today
 - Standard approved in 2009
 - Several ETSI ITS plug-test events
 - Extensive field trials
 - Safety Pilot, Drive C2X, Score@F, simTD, etc.


- Significant efforts in the last 10 years to validate 802.11p
 - This should be re-done for any other alternative technology

802.11p or C-V2x


- Some argue that Cellular-V2x is still far out
- Cellular technology is by far the most successful wireless standard
 - 5.5 billion mobile broadband subscriptions in Q2 2018
- LTE (Rel. 8) dates back to 2009, 5G unde deployment in 2020
 - Extensive cellular infrastructure, it takes time to upgrade
 - ~ 5 billion LTE subscribers still in 2025, next to 2.6 billion 5G subscribers
- LTE Rel. 8. can only address basic ITS use cases
 - No support for low latency and high mobility use cases
 - 3GPP V2x study group established in 2015


Mobile subscriptions worldwide. Source: Ericsson Mobility Report, November 2019

State of LTE in 2018

- LTE coverage still far from 100%
 - Not geographic coverage, but percentage of time when LTE signal available to users
 - Around 65-68% in Germany, France
 - Extensive 3G infrastructure

LTE support for V2x applications

LTE Release 8 can cover most of the V2I – I2V non-safety use cases

- Problem with very congested scenarios
 - evolved Multimedia Broadcast/Multicast Service (eMBMS) in LTE-A (Rel. 9)
 - Designed to support static scenarios crowds in football stadiums
 - Not efficient when a large number of incoming and outgoing vehicles

 Problems with handovers between MNOs (mobile network operators) and cooperation between application service providers

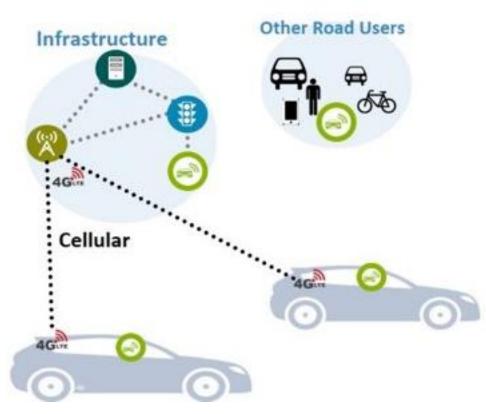
LTE support for V2x applications

- Safety-related use cases represent the real challenge
 - Need complete coverage along the roads (which is not yet the case)
 - Need to handle high bandwidth with very low latency
- Some V2V use-cases require continuous information exchange (1 − 20 Hz)
 - Cooperative Awareness Messages (CAM) autonomous cars
 - Too much data for LTE networks to handle
 - Example: 256 bytes/message, 10 Hz, 2 hours of driving/day = 0.5 Gbyte per month per car
 - At the receiver side, assuming 30 cars in the area of interest, roughly 15 Gbytes per month
 - 1 autonomous car in 2020 4 Tbyte per day (generated inside the car, not transmitted entirely)
- MNOs typically bill based on resources used (\$ / bit / s), but V2V traffic should be free
 - Alternative business model to be developed to justify investments

THE COMING FLOOD OF DATA IN AUTONOMOUS VEHICLES

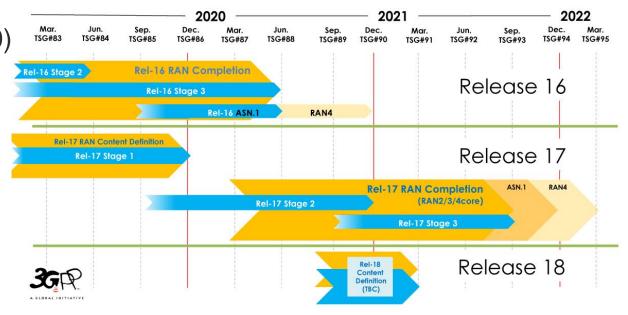
RADAR ~10-100 KB PER SECOND SONAR ~10-100 KB PER SECOND

GPS ~50KB PER SECOND


CAMERAS ~20-40 MB PER SECOND AUTONOMOUS VEHICLES
4.00 GB
PER DAY... EACH DAY

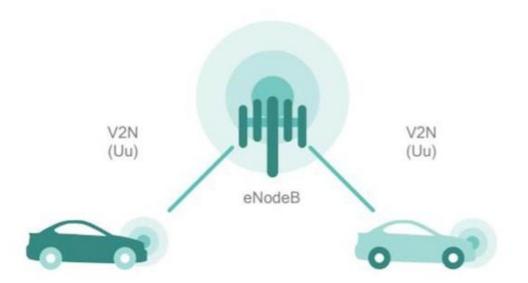
~10-70 MB
PER SECOND

LTE support for V2x applications


- Some V2V use cases do not require high bandwidth, but very low latency
 - event-based broadcasting of Decentralized Environmental Notification messages (DENM) e.g. fast braking
- Could work in the cellular network, but not always
 - Across multiple MNOs, across borders, across cells
- Another solution: develop direct communication technology, as part of the cellular system
 - Device-to-Device communication, part of Release 12, but not suitable for V2V
 - If two devices want to communicate directly, the network allocates the time / frequency resources
 - The network manages the interference generated by the D2D communication
 - Signalling/control via the eNodeB
 - Direct data sending between the UEs
 - D2D will not work if no continuous network coverage

C-V2x evolution

- LTE-D2D Release 12 (2012)
- C-V2x Phase I— Release 14 (started in 2014, published in 2016)
 - V2V, V2I, V2N support
- C-V2x Phase II Release 15 (published in 2018)
 - 5G support (called also 5G-V2x)
- C-V2x Phase III Release 16 (expected for 2020)
 - Enhanced 5G support

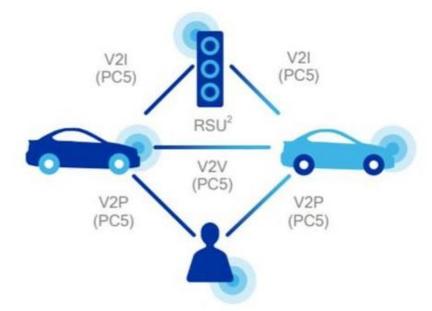

C-V2X defines two complementary transmission modes

Network communications

V2N on "Uu" interface operates in traditional mobile broadband licensed spectrum

Uu interface

e.g. accident 2 kilometer ahead



Direct communications

V2V, V2I, and V2P on "PC5" interface¹, operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network

PC5 interface

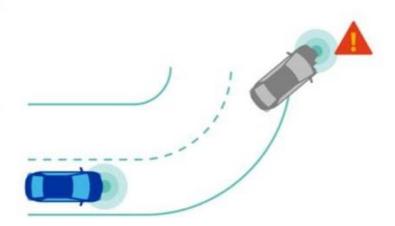
e.g. location, speed

On 5,9 GHz

Continuous V2X technology evolution required

And careful spectrum planning to support this evolution

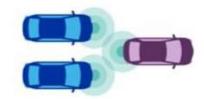
Evolution to 5G, while maintaining backward compatibility


Enhanced safety C-V2X R14/15

Enhanced range and reliability

Basic safety 802.11p or C-V2X R14

Established foundation for V2X


Advanced safety
C-V2X R16 (building upon R14)

Higher throughput

Higher reliability

Wideband ranging and positioning

Lower latency

C-V2X

Rel 14/15 C-V2X established basic safety

Rel 16 NR C-V2X saw continued evolution for advanced use cases

Release 14/15 C-V2X standards completed

Broad industry support with 5GAA

Global trials started in 2017; first commercial deployment expected in 2020

Qualcomm[®] 9150 C-V2X chipset announced in September, 2017

Integration of C-V2X into the Qualcomm[®]
Snapdragon[™] Automotive 4G and 5G
Platforms announced in February, 2019

Driving C-V2X global presence with trials and demos

Gaining traction across numerous regions and industry sectors

From standards completion to independent field testing to initial deployments

Collaborating with key ecosystem players

CAMP	Ford	Quectel	Kapsch
PSA	Lear	SWARCO	Neusoft Reach
BMW	Valeo	Commsignia	Simcom
Daimler	WNC	Genvict	Sasken,
SAIC	CMCC	Nebulalink	Thundersoft
Continental	AT&T	R&S	Telit
Bosch	NTT DoCoMo	Datang	Lacroix
LG	CMRI	Ficosa	And more
ZTE	McCain	Savari	

5GAA Automotive Association

- 8 of the top 9 global automakers
- · Top automotive Tier 1 suppliers
- 9 of the top 10 global telecommunications companies
- Top 3 global smartphone manufacturers
- Top global semiconductor companies
- · Top 5 global wireless infrastructure companies
- Top global test and measurement companies and certification entities
- Global representation from Europe, China, US, Japan, Korea, and elsewhere

Strong C-V2X momentum globally

Sep. 2016

5GAA founded

Feb. 2017

Towards 5G trial in France announced

Sep. 2017

First C-V2X chipset introduced

Apr. 2018

First multi-OEM demo in D.C.

Jul. 2018

Europe's first multi-OEM demonstration in Paris

ത്ത

Jan. 2019

Cooperative driving live interactive demos in Las Vegas

evaluation of C-V2X

Oct. 2018

performance

Multi-OFM

Nov. 2018

Reaches 100 members

Nov. 2018

China-SAE

Compatibility

ITS Stack

C-V2X integrated with Qualcomm® Snapdragon™ Automotive

4G/5G platforms

SAIC project complete

Mar. 2019

May 2019

5GAA-®

C-V2X ecosystem demos

5GAA-⋑

Nov. 2019

Live demos show C-V2X as a market reality

Jan. 2020

ETSI European specifications and standards for C-V2X completed

Jan. 2017

Mar. 2017 ConVeX trial Rel-14 C-V2X in Germany spec finalized announced

Oct. 2017

San Diego Regional C-V2X trial

S AT&T

NOKIA

(Ford)

嗯McCain*

Jun. 2018 1st US deployment in Denver

Oct. 2018

C-V2X functional and performance test report published

Feb. 2019

TELEFÓNICA/ SEAT's live C-V2X/ 5G demo at MWC Barcelona

conVex

Jan. 2019

Announcing C-V2X implementation in Las Vegas

commsignia

Nov. 2019

CAMP congestion control scenario testing by OEM consortium

Feb. 2020

C-V2X devices passed European Radio Equipment Directive (RED)

Jan. 2020

C-V2X deployment in Virginia with VaDoT

