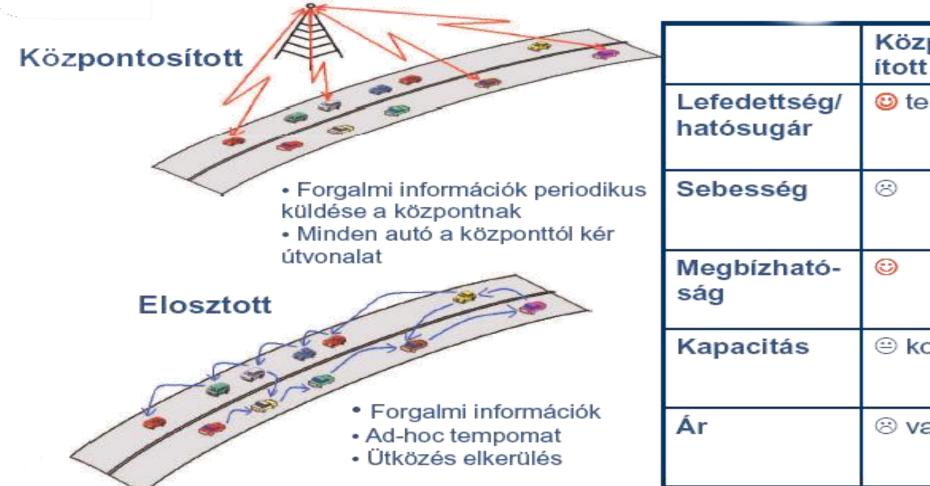


Intelligent Transportation Systems


Rolland Vida, BME TMIT

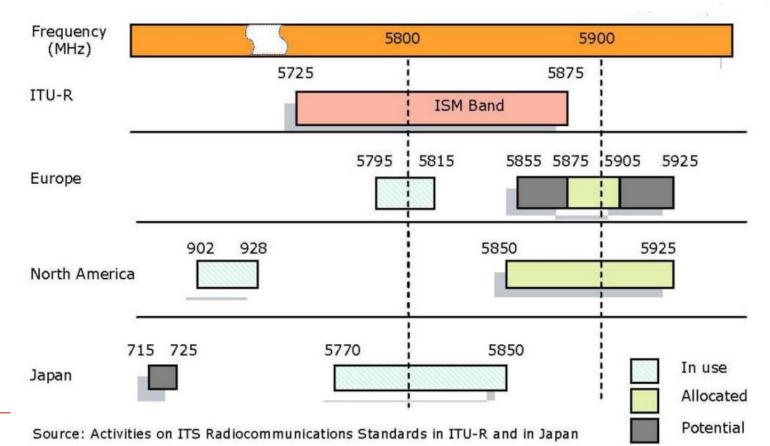
Kommunikációs architektúrák

- ☐ Car-to-Car (C2C) vagy Vehicle-to-Vehicle (V2V)
 - Az autók közvetlenül egymással kommunikálnak
- □ Car-to-Infrastructure (C2I) vagy Vehicle-to-Infrastructure (V2I)
 - A járművek és a kiépített infrastruktúra közötti kommunikáció
 - Mobil hálózat bázisállomásai
 - Úttestben vagy útmentén elhelyezett szenzorok, adattárolók, átjárók
 - RSU Road Side Unit
- ☐ Car-to-Pedestrian
 - Az autók és a gyalogosok közötti kommunikáció
 - Átmenet a C2C és a C2I között
 - Másfajta mobilitás modellek

Kommunikációs architektúrák

	Központos ított	Elosztott
Lefedettség/ hatósugár	© teljes	⊗ rövid (20- 1000m) → szigetek
Sebesség	8	(3)
Megbízható- ság	⊕	⊗ ütközés, interferencia
Kapacitás	⊕ korlátos	⊕ korlátos
Ár	⊗ van	incs nincs

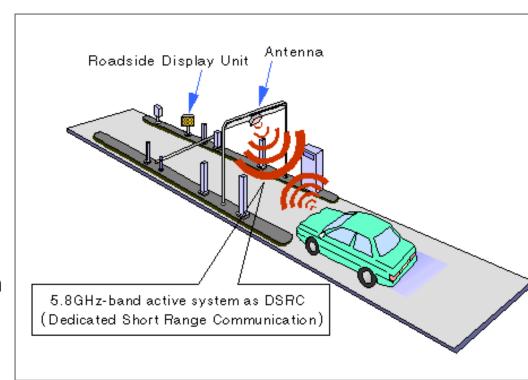
Hibrid megoldások


- Egyes járművek tudnak kommunikálni a központtal
 - PI. LTE
- Mások csak egymással tudnak beszélni
 - Vagy csak nem érdemes szólni a központnak

DSRC – Dedicated Short Range Communications

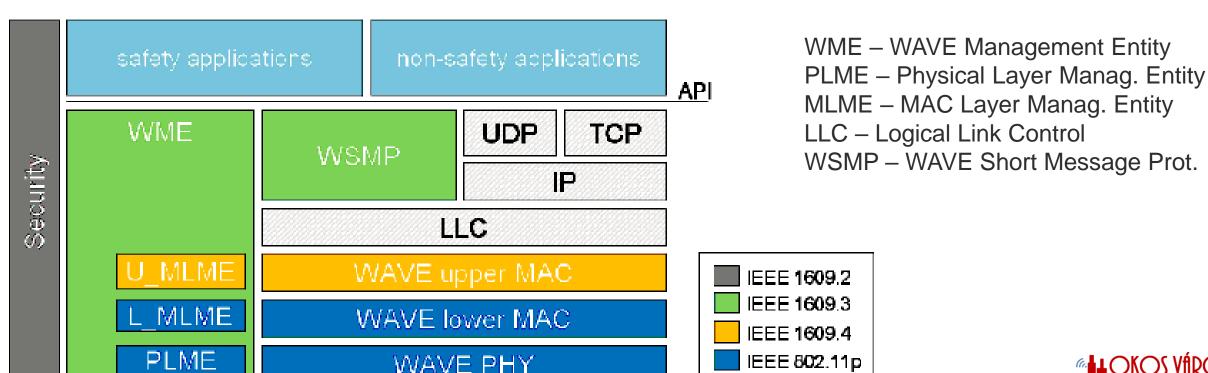
- Dedicated in 1999 by the FCC (Federal Communications Commission) to vehicular communications
 - 75 MHz of spectrum in the 5.9 GHz band (5.850-5.925 GHz)
- In Europe, ETSI allocated in 2008 30 MHz in the 5.9 GHz band for ITS
- Systems in US, Europe, Japan not really compatible with each other

DSRC – Dedicated Short Range Communications

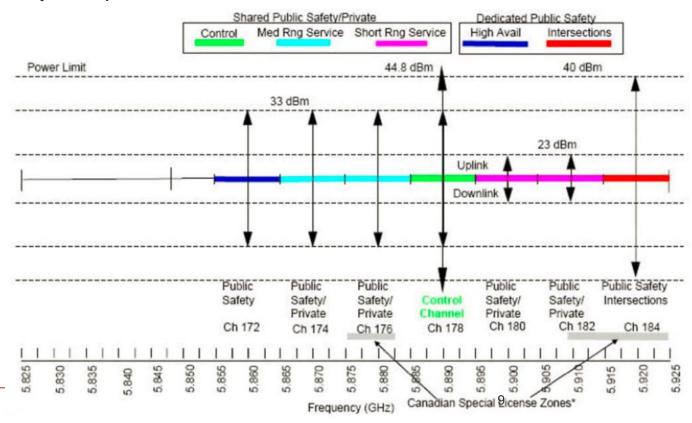

- Traditional ISM bands (Industry, Science, Medical) 900 MHz, 2.4 GHz, 5 GHz
 - Free, unlicenced bands
 - Populated by many technologies Wifi, Bluetooth, Zigbee
 - No restrictions other than some emmission and co-existance rules

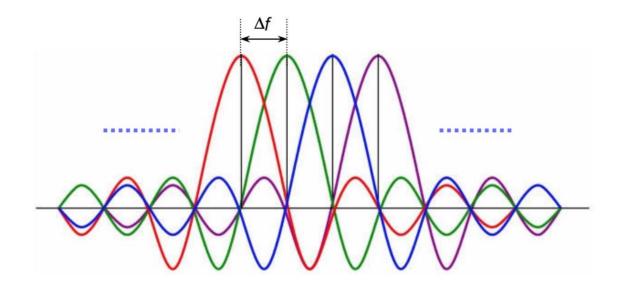
- DSRC band
 - Free but regulated spectrum
 - Restrictions in terms of usage and technologies
 - All radios should be compliant to a standard

DSRC – Dedicated Short Range Communications


- Basic goals of DSRC
 - Support of low latency, secure transmissions
 - Fast network acquisition, rapid and frequent handover handling
 - Highly robust in adverse weather conditions
 - Tolerant to multi-path transmission
- Mainly for public safety applications, to save life and improve traffic flow
- Private services also permitted
 - Spread the deployment costs, encourage quick development and adoption
 - Electronic Toll Collection (ETC) was initially one of the main drivers

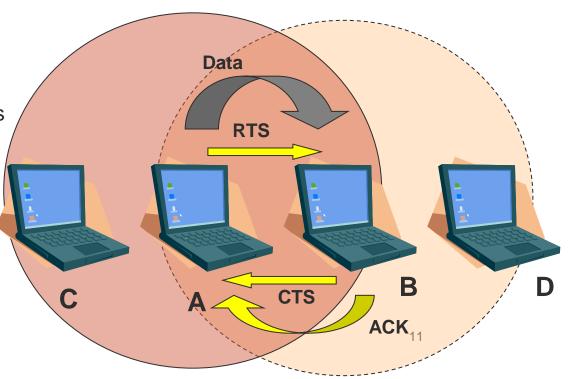
WAVE


- IEEE 802.11
 - Collection of physical (PHY) and medium-access control (MAC) layer specifications for implementing WLAN
 - 802.11a (5 GHz, OFDM), 802.11b (2.4 GHz, DSSS), 802.11g (2.4 GHz, OFDM), 802.11n (2.4 and 5 GHz, MIMO-OFDM), 802.11ac (5 GHz, MIMO-OFDM)
 - 802.11p part of WAVE (Wireless Access in Vehicular Environment)

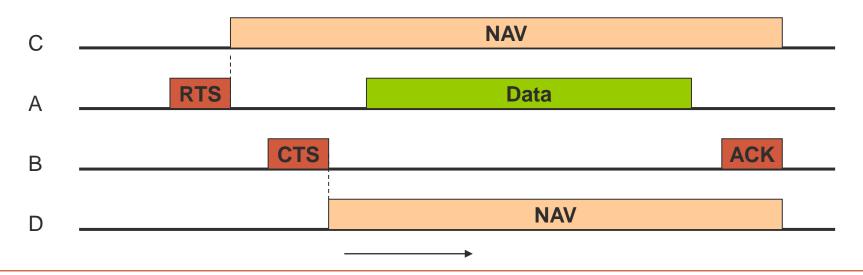

WAVE spectrum bands

- 75 MHz wide spectrum divided into 7x10 MHz wide channels, 5 MHz guard band
 - Channel 178 the control channel (CCH) transmit WAVE Short Messages (WSM), announce services
 - Channel 172 reserved for high availability applications (future use)
 - Channel 184 reserved for intersections
 - The other channels shared between public safety and private uses
 - Channels 174-176 and 180-182 can be combined to form a 20 MHz channel
- In Europe the ITS-G5 standard
 - **ITS-G5B band**: 5.855 5.875 GHz
 - 172, 174 SCH ITS non-safety app
 - ITS-G5A band: 5.875 5.905 GHz
 - 176, 178 SCH ITS traffic safety app
 - 180 CCH
 - **ITS-G5D** band: 5.905 5.925 GHz
 - 182, 184 SCH for future use

WAVE (802.11p) vs IEEE 802.11


- 10 MHz channels instead of 20 MHz
- 3-27 Mbps instead of 6-54 Mbps
- Same modulation schemes (BPSK, QPSK, 16QAM, 64QAM)
- Carrier spacing reduced to 0.15625 MHz from 0.3125 MHz
 - 48 data subcarriers for both

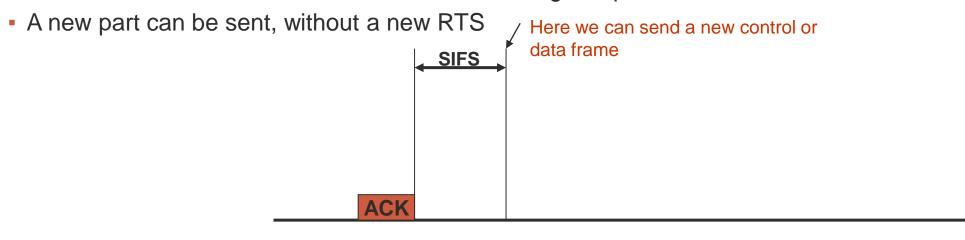
Traditional IEEE 802.11 MAC (DCF)


- DCF Distributed Coordination Function
 - A sends an RTS frame to B, asking the permission to send a data frame
 - Request To Send
 - If B gives the permission, it sends back a CTS frame
 - Clear To Send
 - A sends the data frame, and starts an ACK timer
 - If B receives the packets in order, it replies with an ACK frame
 - If the timer expires without receiving an ACK, everything starts from scratch

Traditional IEEE 802.11 MAC (DCF)

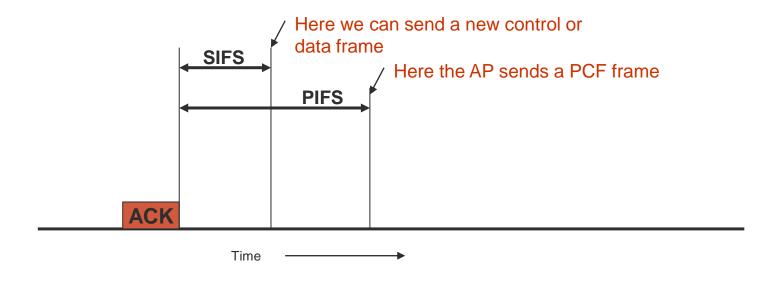
- C hears A, receives the RTS frame
 - Deduces that in the next moments someone will start to send data
 - It stops its own transmission, while the other conversation is not finished
 - Knows when it ends from the ACK timer, included in the RTS frame
 - It sets an internal reminder to himself, saying that the channel is virtually occupied
 - NAV Network Allocation Vector
- D does not hear about the RTS, but hears the CTS
 - Also sets a NAV for himself

Traditional IEEE 802.11 MAC (PCF)


PCF – Point Coordination Function

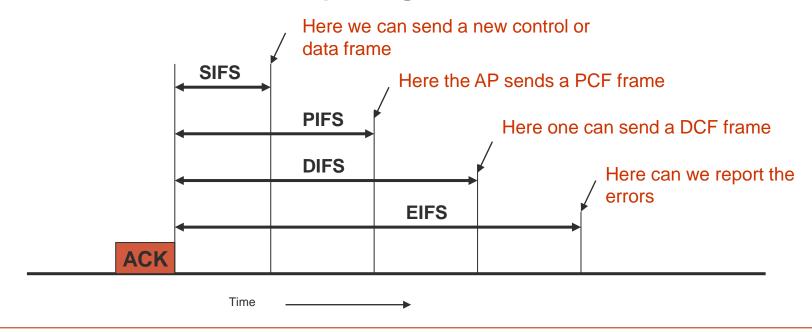
- An Access Point controls the access to the wireless channel
 - No collisions
- The AP polls the other stations, to find out who has data to send
 - The standard defines only some basic features of the poll
 - Does not define the frequency, or the order in which different stations are polled
 - Does not ask for equal treatment for all the stations
- The AP periodically sends a beacon frame
 - 10-100 beacons / s
 - It contains system parameters
 - Hopping sequence and dwell times (for FHSS), clock synchronization, etc.
 - New stations are invited to participate in the polling

Traditional IEEE 802.11 MAC (DCF & PCF)


- PCF and DCF can operate in parallel inside the same cell
 - Distributed and centralized control in the same time?
 - Is possible, if carefully defined timers are used
 - After the sending of a frame, a certain guard time is required before any other transmission
- Four specific timers
 - SIFS Short Inter-Frame Spacing
 - The shortest spacing, to support those devices that currently occupy the channel for a short conversation
 - After the SIFS, a receiver can send a CTS to an RTS
 - After the SIFS, a receiver can send an ACK for a given part of the data frame

Traditional IEEE 802.11 MAC (DCF & PCF)

- PIFS PCF Inter-Frame Spacing
 - After an SIFS, only one specific station can send
 - If nothing is sent until the end of the PIFS, the AP has the possibility to take over the channel, and send a new beacon or a polling frame
 - An ongoing conversation can be finished without disturbing it
 - The AP can access the channel without a contention.
 - No contention with the greedy users



Traditional IEEE 802.11 MAC (DCF & PCF)

DIFS – DCF Inter-Frame Spacing

- If the AP does not have anything to send, after the DIFS anyone can try to gain access to the channel
 - Usual contention rules
 - Exponentially increasing back off interval, if collision
- Same DIFS value for all traffic types

EIFS – Extended Inter-Frame Spacing

802.11p MAC

Enhanced Distributed Coordination Access (EDCA)

- Supports Quality of Service differentiation
 - 4 Access Categories Voice, Video, Best Effort and Background

Arbitration Inter-Frame Spacing to replace the static DIFS

- Different values for each Access Category
- By default...
 - Voice Queue
 1 SIFS + 2 * slot time (AIFSN = 2)
 - Video Queue1 SIFS + 2 * slot time (AIFSN = 2)
 - Best Effort Queue
 1 SIFS + 3 * slot time (AIFSN = 3)
 - Background Queue
 1 SIFS + 7 * slot time (AIFSN = 7)

802.11p beaconing

- Basic Service Set in traditional IEEE 802.11
 - Multiple handshakes to ensure distributed medium access
- Wave Basic Service Set (WBSS) in 802.11p
 - A node broadcasts a beacon, to advertise its WBSS
 - What kind of services it supports, how to join the WBSS
- Within the WBSS, nodes exchange beacons using the Wave Short Message Protocol (WSMP)
 - To create cooperative awareness
 - Information on speed, position, acceleration, direction
 - Sent at regular intervals (e.g., 10 Hz 100 ms)
- Sent on the CCH, no ACK
 - After the channel is sensed free for AIFS
 - If not free, backoff for the size of a Contention Window, and try again
 - No doubling of the contention window
- As opposed to data sent on SCH, where ACK should be sent
 - If no ACK received, collision occured, contention window doubled

IEEE 1609.x

- IEEE 1609.2 security services
- IEEE 1609.3 management services
 - Channel usage monitoring
 - Received channel power indicator (RCPI)
 - Management parameters
- IEEE 1609.4 QoS and multi-channel access
 - User Priorities mapped to Access Categories in EDCA
 - Multi-channel access for single radio 802.11p devices

IEEE 1609.4 channel swithcing

- 7 FDMA channel frequencies
- Multi-channel radios can send and receive over several channels simultaneously
- Single channel radios to access both CCH and SCH
 - Either transmit or receive on a single 10 MHz channel
- Alternating access
 - TDMA channel repetitive periods of 100 ms
 - 46 ms allocated to the CCH channel
 - 46 ms allocated to the SCH channels
 - 4 ms guard interval for switching between CCH and SCH
 - Nodes should wait for a random backoff after the end of the guard interval, before starting to transmit
 - Time synchronisation needed to an external time reference
 - Coordinated Universal Time (UTC) from GPS or other devices
 - WAVE Time Advertisement (WTA) frame

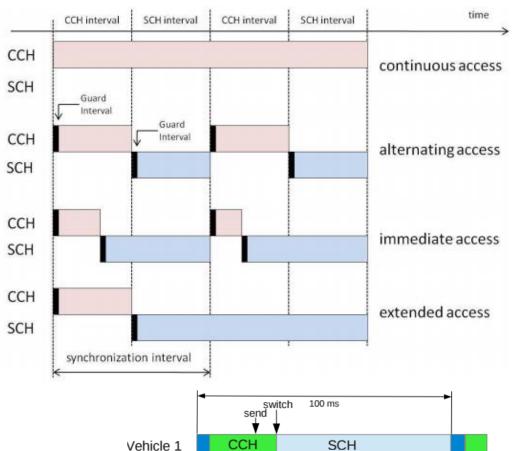
IEEE 1609.4 channel switching

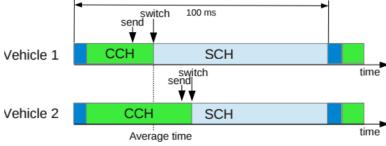
Continuous access

- Transmission can be continuous on the CCH and all SCHs
- It cannot be guaranteed that all other stations will listen to the CCH outside the CCH slot
- Safety messages sent over the CCH in the SCH slot might be ineffective
- The usage of SCH not efficient if nodes listen to the CCH 50% of the time
- Alternative solutions to minimise the impact of channel switching?

IEEE 1609.4 channel switching

Immediate access


- The node does not have to wait until the CCH slot is over
- After the CCH transmission is over, switch to SCH
- Improve the performance of bandwidth-demanding non-safety applications in SCH, at the expense of the CCH


Extended access

Transmission on the SCH without waiting for the CCH

Adaptive Independent Channel Switching

- If more vehicles, more beacons on the CCH
- Nodes can change their average switching time based on vehicle density
 - Long SCH intervals if not many vehicles
 - Fewer collisions at the start of the SCH, as nodes switch independently of each other
- Drawback is that not all nodes on the CCH in the same time
 - Vehicle 1 will miss the beacon of Vehicle 2

IEEE 1609.4 channel switching

Fragmentation

- To better utilise the residual time at the end of the SCH interval
- An extra fragmentation header should be used, which is a drawback
- Works for large packets (TCP)

Best-fit scheme

- Send the packet that best fits the residual time at the end of the SCH interval
 - Better than fragmentation only if packets of different sizes are present in the queue
- Hard to know in advance the actual duration of transmission
 - Frequent changes in the channel congestion
 - Stochastic nature of backoff

