
Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Hálózatok építése és üzemeltetése

A hálózat mint platform (SDN)

2019/11/181

Hálózatok gyors helyzetkép

2

! Switch-ek különböző gyártóktól + interfészek, linkek
! Különböző config felületek/support
! Ki kell találni a hálózat hogy működjön
! A switch-eket router-eket a hozzájuk való config felületen

be kel állítani egyesével
! Ha mindent jól csináltuk, akkor működik a hálózat
! De kell egy szakértő csapat, aki a felmerülő hibákat

folyamatosan figyeli és javítja.
! Kinek jó ez?

Mai téma

2019/11/183

! A hálózat mint platform (SDN)
! A hálózati eszközöket egységben kezelve egy (szoftver)

platformot kapunk, amire alkalmazások fejleszthetők
! Gyökeres váltás a hagyományos gondolkodáshoz képest
! Miért kell ezt tanulni?

“SDN is still young. But understanding OpenFlow controllers and
virtualization, and having these skills on your CV, will be crucial to
stay relevant.''
 --- Joachim Bauernberger

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Miért most?

4

! Voltak már próbálkozások
! Most mi változott?
! Google, datacenters “Networks are in my way.”
! Evolúciós dolgok (vízvezeték)
! Ehhez egy stabil hálózat kell, most jutottunk el oda, hogy

kifejlődtek a stabil hálózatok világméretű szabványai
! Stabilitás, hibatűrés már nem akkora kihívás → extra

szolgáltatások (vö. autóipar)

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András,, BME-TMIT

Hagyományos hálózatok

Összefoglalás

2019/11/185

Hagyományos hálózatok

6

! Síkok (miért?)
! Milyen időskálán dolgozik és milyen szintűek a feladatai
! Pl. Szoftverfejlesztő cég:
! Menedzsment (milyen irányba menjen a cég)
! Projekt (adott projekt feladatainak összehangolása)
! Programozás: jól körülhatárolt lokális problémák

megoldása gyorsan
! Pl. törvényhozás síkjai

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Hagyományos hálózatok síkjai

7

! Adatsík: Az adatsík gyakorlatilag a hálózati (kapcsoló)
eszközöket tartalmazza, amelyek feladata nem más,
mint a csomagok hatékony és extrém gyors továbbítása.

! Vezérlősík: A vezérlő sík különböző protokolljai oldják
meg, hogy a kapcsolóeszközökben levő kapcsolási
logika (táblázatok) megfelelően működjön

! Menedzsment sík: A menedzsment síkban lehet
megadni és nyomon követni a kívánt hálózati
funkcionalitást.

! Tehát a menedzsment sík definiálja, a vezérlő sík
kikényszeríti, az adatsík pedig végrehajtja a kívánt
működést.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 4

Fig. 3. Layered view of networking functionality.

However, the outcome is a very complex and relatively
static architecture, as has been often reported in the networking
literature (e.g., [1], [3], [2], [6], [19]). It is also the fundamental
reason why traditional networks are rigid, and complex to
manage and control. These two characteristics are largely re-
sponsible for a vertically-integrated industry where innovation
is difficult.

Network misconfigurations and related errors are extremely
common in today’s networks. For instance, more than 1000
configuration errors have been observed in BGP routers [20].
From a single misconfigured device may result very undesired
network behavior (including, among others, packet losses,
forwarding loops, setting up of unintended paths, or service
contract violations). Indeed, while rare, a single misconfigured
router is able to compromise the correct operation of the whole
Internet for hours [21], [22].

To support network management, a small number of vendors
offer proprietary solutions of specialized hardware, operating
systems, and control programs (network applications). Net-
work operators have to acquire and maintain different man-
agement solutions and the corresponding specialized teams.
The capital and operational cost of building and maintaining
a networking infrastructure is significant, with long return on
investment cycles, which hamper innovation and addition of
new features and services (for instance access control, load
balancing, energy efficiency, traffic engineering). To alleviate
the lack of in-path functionalities within the network, a myriad
of specialized components and middleboxes, such as firewalls,
intrusion detection systems and deep packet inspection en-
gines, proliferate in current networks. A recent survey of 57
enterprise networks shows that the number of middleboxes
is already on par with the number of routers in current
networks [23]. Despite helping in-path functionalities, the
net effect of middleboxes has been increased complexity of
network design and its operation.

III. WHAT IS SOFTWARE-DEFINED NETWORKING?
The term SDN (Software-Defined Networking) was origi-

nally coined to represent the ideas and work around OpenFlow
at Stanford University [24]. As originally defined, SDN refers
to a network architecture where the forwarding state in the data
plane is managed by a remote control plane decoupled from
the former. The networking industry has on many occasions

shifted from this original view of SDN, by referring to
anything that involves software as being SDN. We therefore
attempt, in this section, to provide a much less ambiguous
definition of software-defined networking.

We define an SDN as a network architecture with four
pillars:

1) The control and data planes are decoupled. Control
functionality is removed from network devices that will
become simple (packet) forwarding elements.

2) Forwarding decisions are flow-based, instead of destina-
tion-based. A flow is broadly defined by a set of packet
field values acting as a match (filter) criterion and a set
of actions (instructions). In the SDN/OpenFlow context,
a flow is a sequence of packets between a source and
a destination. All packets of a flow receive identical
service policies at the forwarding devices [25], [26]. The
flow abstraction allows unifying the behavior of different
types of network devices, including routers, switches,
firewalls, and middleboxes [27]. Flow programming
enables unprecedented flexibility, limited only to the
capabilities of the implemented flow tables [9].

3) Control logic is moved to an external entity, the so-
called SDN controller or Network Operating System
(NOS). The NOS is a software platform that runs on
commodity server technology and provides the essential
resources and abstractions to facilitate the programming
of forwarding devices based on a logically centralized,
abstract network view. Its purpose is therefore similar to
that of a traditional operating system.

4) The network is programmable through software appli-
cations running on top of the NOS that interacts with
the underlying data plane devices. This is a fundamental
characteristic of SDN, considered as its main value
proposition.

Note that the logical centralization of the control logic, in
particular, offers several additional benefits. First, it is simpler
and less error-prone to modify network policies through high-
level languages and software components, compared with low-
level device specific configurations. Second, a control program
can automatically react to spurious changes of the network
state and thus maintain the high-level policies intact. Third, the
centralization of the control logic in a controller with global
knowledge of the network state simplifies the development of
more sophisticated networking functions, services and appli-
cations.

Following the SDN concept introduced in [5], an SDN can
be defined by three fundamental abstractions: (i) forwarding,
(ii) distribution, and (iii) specification. In fact, abstractions are
essential tools of research in computer science and information
technology, being already an ubiquitous feature of many
computer architectures and systems [28].

Ideally, the forwarding abstraction should allow any for-
warding behavior desired by the network application (the con-
trol program) while hiding details of the underlying hardware.
OpenFlow is one realization of such abstraction, which can
be seen as the equivalent to a “device driver” in an operating
system.

Síkok példa OSPF-el

8

! Menedzsment sík: legyen OSPF
! Vezérlősíkban az OSPF egyedek monitorozzák

a topológiát, kiszámolják a legrövidebb utakat
és beállítják az útválasztási táblákat

! Az adatsík meg a táblázatok alapján
villámgyorsan pakolja a csomagokat.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Hagyományos hálózatok működési logikája

9

! Síkok megvalósítása, vezérlő - és adatsík egy
eszközben (olyan mintha nem lenne projektvezető,
vagy mindenki az lenne)

! Elosztott protokollok
! Drága (CAPEX, OPEX)
! Lassú innováció
! Extra funkciók middlebox-okban

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 4

Fig. 3. Layered view of networking functionality.

However, the outcome is a very complex and relatively
static architecture, as has been often reported in the networking
literature (e.g., [1], [3], [2], [6], [19]). It is also the fundamental
reason why traditional networks are rigid, and complex to
manage and control. These two characteristics are largely re-
sponsible for a vertically-integrated industry where innovation
is difficult.

Network misconfigurations and related errors are extremely
common in today’s networks. For instance, more than 1000
configuration errors have been observed in BGP routers [20].
From a single misconfigured device may result very undesired
network behavior (including, among others, packet losses,
forwarding loops, setting up of unintended paths, or service
contract violations). Indeed, while rare, a single misconfigured
router is able to compromise the correct operation of the whole
Internet for hours [21], [22].

To support network management, a small number of vendors
offer proprietary solutions of specialized hardware, operating
systems, and control programs (network applications). Net-
work operators have to acquire and maintain different man-
agement solutions and the corresponding specialized teams.
The capital and operational cost of building and maintaining
a networking infrastructure is significant, with long return on
investment cycles, which hamper innovation and addition of
new features and services (for instance access control, load
balancing, energy efficiency, traffic engineering). To alleviate
the lack of in-path functionalities within the network, a myriad
of specialized components and middleboxes, such as firewalls,
intrusion detection systems and deep packet inspection en-
gines, proliferate in current networks. A recent survey of 57
enterprise networks shows that the number of middleboxes
is already on par with the number of routers in current
networks [23]. Despite helping in-path functionalities, the
net effect of middleboxes has been increased complexity of
network design and its operation.

III. WHAT IS SOFTWARE-DEFINED NETWORKING?
The term SDN (Software-Defined Networking) was origi-

nally coined to represent the ideas and work around OpenFlow
at Stanford University [24]. As originally defined, SDN refers
to a network architecture where the forwarding state in the data
plane is managed by a remote control plane decoupled from
the former. The networking industry has on many occasions

shifted from this original view of SDN, by referring to
anything that involves software as being SDN. We therefore
attempt, in this section, to provide a much less ambiguous
definition of software-defined networking.

We define an SDN as a network architecture with four
pillars:

1) The control and data planes are decoupled. Control
functionality is removed from network devices that will
become simple (packet) forwarding elements.

2) Forwarding decisions are flow-based, instead of destina-
tion-based. A flow is broadly defined by a set of packet
field values acting as a match (filter) criterion and a set
of actions (instructions). In the SDN/OpenFlow context,
a flow is a sequence of packets between a source and
a destination. All packets of a flow receive identical
service policies at the forwarding devices [25], [26]. The
flow abstraction allows unifying the behavior of different
types of network devices, including routers, switches,
firewalls, and middleboxes [27]. Flow programming
enables unprecedented flexibility, limited only to the
capabilities of the implemented flow tables [9].

3) Control logic is moved to an external entity, the so-
called SDN controller or Network Operating System
(NOS). The NOS is a software platform that runs on
commodity server technology and provides the essential
resources and abstractions to facilitate the programming
of forwarding devices based on a logically centralized,
abstract network view. Its purpose is therefore similar to
that of a traditional operating system.

4) The network is programmable through software appli-
cations running on top of the NOS that interacts with
the underlying data plane devices. This is a fundamental
characteristic of SDN, considered as its main value
proposition.

Note that the logical centralization of the control logic, in
particular, offers several additional benefits. First, it is simpler
and less error-prone to modify network policies through high-
level languages and software components, compared with low-
level device specific configurations. Second, a control program
can automatically react to spurious changes of the network
state and thus maintain the high-level policies intact. Third, the
centralization of the control logic in a controller with global
knowledge of the network state simplifies the development of
more sophisticated networking functions, services and appli-
cations.

Following the SDN concept introduced in [5], an SDN can
be defined by three fundamental abstractions: (i) forwarding,
(ii) distribution, and (iii) specification. In fact, abstractions are
essential tools of research in computer science and information
technology, being already an ubiquitous feature of many
computer architectures and systems [28].

Ideally, the forwarding abstraction should allow any for-
warding behavior desired by the network application (the con-
trol program) while hiding details of the underlying hardware.
OpenFlow is one realization of such abstraction, which can
be seen as the equivalent to a “device driver” in an operating
system.

Middlebox-ok

10 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András,, BME-TMIT

Az SDN alapkövei

2019/11/1811

Mi nem az SDN?

12

! Nem egy új hálózati működési elv
! Nem egy új algoritmus
! Nem egy új protokoll
! Az SDN nem változtatja meg a hálózatok alapvető

lehetőségeit és korlátait

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Mi akkor az SDN?

13

! Egy újfajta szemléletmód és technológia, amivel a
hálózat funkcionalitását megadjuk, nyomon követjük
és teljesítményét ellenőrizzük.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Az SDN alapkövei I.

14

! A vezérlő és adatsíkok szétválasztása. A
vezérlési funkciókat kivesszük a
kapcsolóeszközökből, amik ezek után
egyszerű csomagtovábbító elemekké válnak
mindenféle intelligencia nélkül.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Az SDN alapkövei II.

15

! A kapcsolási döntéseket nem csomag, hanem
folyamszinten hozzuk meg.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Az SDN alapkövei III.

16

! A vezérlési logikát (ami hagyományos IP hálózatokban a
kapcsolókban van) egy külső entitásba, a kontrollerbe más nevén
a hálózati operációs rendszerbe (Network Operating System
(NOS)) költöztetjük.

! Kontrollhálózat

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Igénytelen, egyszerű (pl. broadcast) hálózat
 akár alacsony átviteli sebességgel
de magas rendelkezésreállásal

Az SDN alapkövei IV.

17

! A hálózat programozható a NOS felett futó alkalmazások
segítségével. Az alkalmazások kommunikálhatnak a
kapcsolóeszközökkel és dinamikusan változtathatják azok
viselkedését.

! Alkalmazások pl.: routing, tűzfal

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Analógia a szoftver platformokkal

18 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT
| 2012. október 10-11. | Infokom2012, Mátraháza1

Overhead-free routing with OpenFlow  
 Gulyás András, Németh Felicián BME-TMIT

Hálózatok

Zárt

Szoftver

Alkalmazások

Nyílt interfészek
Gyors innováció

Óriási ipar

Mikroprocesszor

Windows Linux Mac
OS

Zárt védett
interfészek

Lassú innováció

Speciális
hardver

Speciális
control

Speciális
alkalmazásokNyílt interfész

Nyílt interfész

Alkalmazások

Speciális
kapcsoló chipek

Control Control

Nyílt interfész

Nyílt interfész

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András,, BME-TMIT

Az SDN síkjai

2019/11/1819

Az SDN síkjai

20 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 5

Network Infrastructure
Forwarding Devices

Open southbound API

Network(Opera,ng(System((SDN(controllers)(

Network(Abstrac,ons((e.g.,(topology(abstrac,on)(

Open northbound API

Net(App(1(Net(App(2(Net(App(n"

Global network view

Abstract network views

C
on

tr
ol

 p
la

ne

D
at

a
Pl

an
e

Fig. 4. SDN architecture and its fundamental abstractions.

The distribution abstraction should shield SDN applications
from the vagaries of distributed state, making the distributed
control problem a logically centralized one. Its realization
requires a common distribution layer, which in SDN resides
in the NOS. This layer has two essential functions. First,
it is responsible for installing the control commands on the
forwarding devices. Second, it collects status information
about the forwarding layer (network devices and links), to offer
a global network view to network applications.

The last abstraction is specification, which should allow a
network application to express the desired network behavior
without being responsible for implementing that behavior
itself. This can be achieved through virtualization solutions,
as well as network programming languages. These approaches
map the abstract configurations that the applications express
based on a simplified, abstract model of the network, into a
physical configuration for the global network view exposed
by the SDN controller. Figure 4 depicts the SDN architecture,
concepts and building blocks.

As previously mentioned, the strong coupling between
control and data planes has made it difficult to add new
functionality to traditional networks, a fact illustrated in
Figure 5. The coupling of the control and data planes (and
its physical embedding in the network elements) makes the
development and deployment of new networking features
(e.g., routing algorithms) very hard since it would imply a
modification of the control plane of all network devices –
through the installation of new firmware and, in some cases,
hardware upgrades. Hence, the new networking features are
commonly introduced via expensive, specialized and hard-to-
configure equipment (aka middleboxes) such as load balancers,
intrusion detection systems (IDS), and firewalls, among others.
These middleboxes need to be placed strategically in the
network, making it even harder to later change the network
topology, configuration, and functionality.

In contrast, SDN decouples the control plane from the
network devices and becomes an external entity: the network

SDN$controller$

Network$Applica2ons$

MAC$
Learning$

Rou2ng$
Algorithms$

Intrusion$
Detec2on$
System$

Load$
Balancer$

S
of

tw
ar

e-
D

ef
in

ed
 N

et
w

or
ki

ng

C
on

ve
nt

io
na

l N
et

w
or

ki
ng

Fig. 5. Traditional networking versus Software-Defined Networking (SDN).
With SDN, management becomes simpler and middleboxes services can be
delivered as SDN controller applications.

operating system or SDN controller. This approach has several
advantages:

• It becomes easier to program these applications since the
abstractions provided by the control platform and/or the
network programming languages can be shared.

• All applications can take advantage of the same network
information (the global network view), leading (arguably)
to more consistent and effective policy decisions while
re-using control plane software modules.

• These applications can take actions (i.e., reconfigure
forwarding devices) from any part of the network. There
is therefore no need to devise a precise strategy about the
location of the new functionality.

• The integration of different applications becomes more
straightforward [29]. For instance, load balancing and
routing applications can be combined sequentially, with
load balancing decisions having precedence over routing
policies.

A. Terminology

To identify the different elements of an SDN as unequiv-
ocally as possible, we now present the essential terminology
used throughout this work.
Forwarding Devices (FD): Hardware- or software-based data
plane devices that perform a set of elementary operations. The
forwarding devices have well-defined instruction sets (e.g.,
flow rules) used to take actions on the incoming packets
(e.g., forward to specific ports, drop, forward to the controller,
rewrite some header). These instructions are defined by south-
bound interfaces (e.g., OpenFlow [9], ForCES [30], Protocol-
Oblivious Forwarding (POF) [31]) and are installed in the

Vezérlősík

Menedzsment sík

Adatsík

SDN vs hagyományos

21 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 5

Network Infrastructure
Forwarding Devices

Open southbound API

Network(Opera,ng(System((SDN(controllers)(

Network(Abstrac,ons((e.g.,(topology(abstrac,on)(

Open northbound API

Net(App(1(Net(App(2(Net(App(n"

Global network view

Abstract network views

C
on

tr
ol

 p
la

ne

D
at

a
Pl

an
e

Fig. 4. SDN architecture and its fundamental abstractions.

The distribution abstraction should shield SDN applications
from the vagaries of distributed state, making the distributed
control problem a logically centralized one. Its realization
requires a common distribution layer, which in SDN resides
in the NOS. This layer has two essential functions. First,
it is responsible for installing the control commands on the
forwarding devices. Second, it collects status information
about the forwarding layer (network devices and links), to offer
a global network view to network applications.

The last abstraction is specification, which should allow a
network application to express the desired network behavior
without being responsible for implementing that behavior
itself. This can be achieved through virtualization solutions,
as well as network programming languages. These approaches
map the abstract configurations that the applications express
based on a simplified, abstract model of the network, into a
physical configuration for the global network view exposed
by the SDN controller. Figure 4 depicts the SDN architecture,
concepts and building blocks.

As previously mentioned, the strong coupling between
control and data planes has made it difficult to add new
functionality to traditional networks, a fact illustrated in
Figure 5. The coupling of the control and data planes (and
its physical embedding in the network elements) makes the
development and deployment of new networking features
(e.g., routing algorithms) very hard since it would imply a
modification of the control plane of all network devices –
through the installation of new firmware and, in some cases,
hardware upgrades. Hence, the new networking features are
commonly introduced via expensive, specialized and hard-to-
configure equipment (aka middleboxes) such as load balancers,
intrusion detection systems (IDS), and firewalls, among others.
These middleboxes need to be placed strategically in the
network, making it even harder to later change the network
topology, configuration, and functionality.

In contrast, SDN decouples the control plane from the
network devices and becomes an external entity: the network

SDN$controller$

Network$Applica2ons$

MAC$
Learning$

Rou2ng$
Algorithms$

Intrusion$
Detec2on$
System$

Load$
Balancer$

S
of

tw
ar

e-
D

ef
in

ed
 N

et
w

or
ki

ng

C
on

ve
nt

io
na

l N
et

w
or

ki
ng

Fig. 5. Traditional networking versus Software-Defined Networking (SDN).
With SDN, management becomes simpler and middleboxes services can be
delivered as SDN controller applications.

operating system or SDN controller. This approach has several
advantages:

• It becomes easier to program these applications since the
abstractions provided by the control platform and/or the
network programming languages can be shared.

• All applications can take advantage of the same network
information (the global network view), leading (arguably)
to more consistent and effective policy decisions while
re-using control plane software modules.

• These applications can take actions (i.e., reconfigure
forwarding devices) from any part of the network. There
is therefore no need to devise a precise strategy about the
location of the new functionality.

• The integration of different applications becomes more
straightforward [29]. For instance, load balancing and
routing applications can be combined sequentially, with
load balancing decisions having precedence over routing
policies.

A. Terminology

To identify the different elements of an SDN as unequiv-
ocally as possible, we now present the essential terminology
used throughout this work.
Forwarding Devices (FD): Hardware- or software-based data
plane devices that perform a set of elementary operations. The
forwarding devices have well-defined instruction sets (e.g.,
flow rules) used to take actions on the incoming packets
(e.g., forward to specific ports, drop, forward to the controller,
rewrite some header). These instructions are defined by south-
bound interfaces (e.g., OpenFlow [9], ForCES [30], Protocol-
Oblivious Forwarding (POF) [31]) and are installed in the

Vezérlősík

Menedzsment sík

Adatsík

Legrövidebb útválasztás OSPF példa

22 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Az adat és vezérlősík szétválasztásából adódó előnyök

23

! Sokkal könnyebb a hálózatot új funkciókkal bővíteni, hiszen egy SDN
alkalmazás egyszerre használhatja, a kontroller által nyújtott információkat
és a magas szintű programozási nyelveket.

! Minden alkalmazás használhatja a hálózatról rendelkezésre álló
információkat ezért sokkal hatékonyabb szolgáltatások készíthetők és a
vezérlősík szoftvermoduljai több modulnál is újrahasznosíthatók.

! Az alkalmazások nagyon könnyen újrakonfigurálhatják a hálózat bármely
részében levő kapcsolókat, ezért nincs szükség előre eldönteni, hogy hova
helyezzük az egyes funkciókat (pl. terheléselosztó, tűzfal)

! A szolgáltatások integrációja sokkal egyszerűbb. Pl. egyszerűen
megadhatjuk, hogy a terheléselosztó alkalmazásnak nagyobb prioritása
legyen a routing alkalmazásnál.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András,, BME-TMIT

Az SDN rétegei

2019/11/1824

Rétegek

25

! Miért beszélünk rétegekről?
Specifikus-e ez?

! Pl: a hallás rétegei
! Ha az interfészek letisztultak és

változatlanok, akkor a fejlődés
(innováció) párhuzamosan mehet a
rétegeken belül.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Fizikai réteg: levegő

Adatkapcsolat: fül

Transzport: idegpályák

Reprezentáció: hangok

Alkalmazás: értelem

Az SDN rétegei

26 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Infrastruktúra

27

! A hálózat fizikai kapcsolóelemeinek és a köztük levő
összeköttetések halmaza

! Mit csinál egy SDN kapcsoló: OpenFlow

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 11

SDN$DEVICE$

SDN$CONTROLLER$

Network$$
Opera5ng$$
System$ Co

nt
ro
l$

Co
m
m
un

ic
a5

on
s$

NetAppNetApp
NetApp

NetAppNetAppNetApp

FLOW$TABLES$

Co
nt
ro
l$

Co
m
m
un

ic
a5

on
s$

RULE% STATS%ACTION%

Packet%+%counters%

1.  Forward%packet%to%port(s)%
2.  Encapsulate%and%forward%to%controller%
3.  Drop%packet%
4.  Send%to%normal%processing%pipeline%

Switch%
port%

MAC%
src%

MAC%
dst%

VLAN%
ID%

IP%%
src%

TCP%
psrc%

TCP%
pdst%

IP%%
dst%

Eth%
type%

FLOW%TABLE%

Fig. 7. OpenFlow-enabled SDN devices

TABLE III
DIFFERENT MATCH FIELDS, STATISTICS AND CAPABILITIES HAVE BEEN ADDED ON EACH OPENFLOW PROTOCOL REVISION. THE NUMBER OF REQUIRED

(REQ) AND OPTIONAL (OPT) CAPABILITIES HAS GROWN CONSIDERABLY.

OpenFlow Version Match fields Statistics
Matches # Instructions # Actions # Ports
Req Opt Req Opt Req Opt Req Opt

v 1.0

Ingress Port Per table statistics

18 2 1 0 2 11 6 2
Ethernet: src, dst, type, VLAN Per flow statistics
IPv4: src, dst, proto, ToS Per port statistics
TCP/UDP: src port, dst port Per queue statistics

v 1.1
Metadata, SCTP, VLAN tagging Group statistics

23 2 0 0 3 28 5 3
MPLS: label, traffic class Action bucket statistics

v 1.2
OpenFlow Extensible Match (OXM)

14 18 2 3 2 49 5 3
IPv6: src, dst, flow label, ICMPv6

v 1.3 PBB, IPv6 Extension Headers
Per-flow meter

14 26 2 4 2 56 5 3
Per-flow meter band

v 1.4 —
—

14 27 2 4 2 57 5 3
Optical port properties

8K entries. Nonetheless, this is changing at a fast pace. Some
of the latest devices released in the market go far beyond
that figure. Gigabit Ethernet (GbE) switches for common
business purposes are already supporting up to 32K L2+L3 or
64K L2/L3 exact match flows [122]. Enterprise class 10GbE
switches are being delivered with more than 80K Layer 2 flow
entries [123]. Other switching devices using high performance
chips (e.g., EZchip NP-4) provide optimized TCAM memory
that supports from 125K up to 1000K flow table entries [124].
This is a clear sign that the size of the flow tables is growing at
a pace aiming to meet the needs of future SDN deployments.

Networking hardware manufacturers have produced various
kinds of OpenFlow-enabled devices, as is shown in Table IV.
These devices range from equipment for small businesses
(e.g., GbE switches) to high-class data center equipment (e.g.,
high-density switch chassis with up to 100GbE connectivity
for edge-to-core applications, with tens of Tbps of switching
capacity).

Software switches are emerging as one of the most promis-
ing solutions for data centers and virtualized network in-
frastructures [147], [148], [149]. Examples of software-based
OpenFlow switch implementations include Switch Light [145],

ofsoftswitch13 [141], Open vSwitch [142], OpenFlow Ref-
erence [143], Pica8 [150], Pantou [146], and XorPlus [46].
Recent reports show that the number of virtual access ports is
already larger than physical access ports on data centers [149].
Network virtualization has been one of the drivers behind this
trend. Software switches such as Open vSwitch have been
used for moving network functions to the edge (with the core
performing traditional IP forwarding), thus enabling network
virtualization [112].

An interesting observation is the number of small, start-
up enterprises devoted to SDN, such as Big Switch, Pica8,
Cyan, Plexxi, and NoviFlow. This seems to imply that SDN is
springing a more competitive and open networking market, one
of its original goals. Other effects of this openness triggered by
SDN include the emergence of so-called “bare metal switches”
or “whitebox switches”, where the software and hardware are
sold separately and the end-user is free to load an operating
system of its choice [151].

B. Layer II: Southbound Interfaces
Southbound interfaces (or southbound APIs) are the con-

necting bridges between control and forwarding elements, thus

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Déli interfész

28

! A kapcsolóelemek és a NOS közötti információátadás módja
! Lényege, hogy implementációtól függetlenül specifikálja a kontroll és

adatsík kommunikációját
! OpenFlow esetében az OpenFlow protokoll

! Esemény alapú működés
! Link, port események küldése a NOS-nak
! Flow statisztikák küldése (pl. hány csomag volt része egy adott

folyamnak)
! Packet-in és flow-mod: a kapcsoló jelzi, ha nem tudja mit kezdjen

egy csomaggal a NOS erre táblabejegyzést helyezhet el.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Hálózati hypervisor

29

! Virtualizációnak van-e értelme?
! Hálózati virtualizáció:

! Lehet pl. eszköz szintű: bizonyos kapcsolókat és linkeket külön NOS-hoz
rendeljük hozzá.

! Lehet pl. folyamtér (flow-space) szintű, amikor adott folyamokat rendelük
külön NOS-hoz, vagy alkalmazáshoz

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

FlowVisor

30 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Hálózati operációs rendszer NOS

31

! Az agy: ide fut be minden információ az infrastruktúrából
! Magas szintű API az infrastruktúrával (kapcsolóelemekkel)

való kommunikációra (hasonlóan az OS-ekhez), izoláció,
biztonság, konkurens hozzáférés

! Alapvető szolgáltatások, topológia felderítés, monitorozás
! Kapcsolóelemek konfigurációja, menedzsmentje

(korábban kézzel, zárt struktúrában), akár többféle déli
interfész támogatásával

! Erre épülnek a hálózati alkalmazások
Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Hálózati operációs rendszerek OpenFlow-hoz

32 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Északi interfész

33

! Magát a hálózat absztrakcióját valósítja meg
! A déli interfésszel szemben ez egy szoftver rendszer
! Az alkalmazások és a NOS közötti kommunikációt adja

meg
! Még nincs gyakorlatban elfogadott verzió
! Legtöbb NOS-nak az API-ja jelenti az északi interface
! De vannak már próbálkozások (frenetic REST API)
! Hasonló kéne legyen mint az OS-ek esetében a POSIX

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Programozási nyelvek

34

! Assembly—OpenFlow üzenetek
! Tisztán az OpenFlow üzenetekkel is lehet hálózatot

vezérelni,
! nagyon bonyolult, hiszen csomó hardver közeli apróságra

kell figyelni, mint pl. konkurens folyamtábla-szerkesztés,
átfedő folyamtábla bejegyzések, dinamikus működésből
adódó inkonzisztens állapotok stb.

! Ráadásul ilyen alacsony szintű nyelven nehéz jól strukturált
újrafelhasználható kódot írni.

! Magasabb szintű nyelvek: c/c++, java, python, ruby
Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

Magas szintű programozási nyelvek nyelvek

35

! A fő céljuk ezeknek a nyelveknek az, hogy a fejlesztőknek ne kelljen annyit a hálózat
megvalósításával foglalkozniuk, ehelyett a konkrét megoldandó feladatra (logikai
működés) tudjanak fókuszálni

! Előnyeik:
! A hálózat magas szintű absztrakciója, melyen keresztül a hálózat funkcionalitása (pl.

legrövidebb útválasztás) könnyen megadható. A fordító mechanizmusok feladata
ezután, hogy a magas szinten megadott leírást végül konkrét OpenFlow üzenetekké
transzformálják.

! Produktív, problémaközpontú környezet kialakítása, a fejlesztés és innováció
gyorsítása, hibalehetőségek minimalizálása.

! Moduláris, újrahasznosítható kód létrehozása.
! Nyelv alapú hálózati virtualizáció. Ez kb. azt jelenti, hogy a hálózat elemeihez

virtuális objektumokat rendelhetünk (egy kapcsolóhoz akár többet is), így magán a
hálózati alkalmazáson belül hálózatvirtualizációt valósíthatunk meg.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Magas vs. alacsony szint példa

36 Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

Simple Repeater
def switch_join(switch):

Repeat Port 1 to Port 2
p1 = {in_port:1}
a1 = [forward(2)]
install(switch, p1, DEFAULT, a1)

Repeat Port 2 to Port 1
p2 = {in_port:2}
a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

Web Traffic Monitor
def switch_join(switch)):

Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_stats(switch, p)

def query_stats(switch, p, bytes, ...)
print bytes
sleep(30)
query_stats(switch, p)

Composition: Repeater + Monitor
def switch_join(switch):

pat1 = {inport:1}
pat2 = {inport:2}
pat2web = {in_port:2, tp_src:80}
install(switch, pat1, DEFAULT, None, [forward(2)])
install(switch, pat2web, HIGH, None, [forward(1)])
install(switch, pat2, DEFAULT, None, [forward(1)])
query_stats(switch, pat2web)

def query_stats(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Static repeating between ports 1 and 2
def repeater():

rules=[Rule(inport:1, [forward(2)]),
Rule(inport:2, [forward(1)])]
register(rules)

Monitoring Web traffic
def web_monitor():

q = (Select(bytes) *
Where(inport:2 & tp_src:80) *
Every(30))
q >> Print()

Composition of two separate modules

def main():
repeater()
web_monitor(

Alkalmazások

37

! Az SDN architektúra (SDN stack) tetején ülnek az
alkalmazások. Ezek

! adják meg a hálózat funkcióját, működési logikáját.
! Alap (általában a NOS-al együtt jár) topology, discovery,

monitoring
! Load balancing, firewall, routing, multipath, hibatűrés,

energiafogyasztás minimalizálás, QoS, mobilitás kezelés,
hálózatoptimalizálás stb.

! Nézzük meg hogyan töltünk alkalmazásokat egy OpenFlow
hálózatra

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

VERSION 2.01 10

NetAppNetAppNetApp
NetAppNetApp

NetApp

Network$Infrastructure$

Southbound$Interface$

Network$Opera7ng$System$

Northbound$Interface$

Language<based$Virtualiza7on$

Programming$Languages$

Network$Applica7ons$ Debugging,$Tes7ng$&
$Sim

ula7on$

Network$Opera7ng$
System(NOS)and$

Network$Hypervisors$

Network$Applica7ons$

Ro
u7

ng
$

Ac
ce
ss
$

Co
nt
ro
l$

Lo
ad

$
ba

la
nc
er
$

Control plane

Data plane

Management plane

(a)$ (b)$ (c)$

Network$Hypervisor$

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

NFV (Network Function Virtualization)

38

! Az NFV nem más, mint a hardveres middlebox-ok virtualizált
verziója.

! NFV-be általában olyan funkcionalitást szoktak tenni, ami a
kapcsolókban nem valósítható meg (pl. részletes
csomagvizsgálat, forgalomanalízis, hálózati kódolás,
behatolás detektálás stb.).

! A middlebox-ok virtualizációja kényelmessé teszi
használatukat, könnyen menedzselhetővé varázsolja őket, a
virtualizált verziókat könnyű áthelyezni, frissíteni vagy éppen
kivonni a forgalomból.

Hálózatok építése és üzemeltetése, A hálózat mint platform (SDN) - Gulyás András, BME-TMIT

