

Sensor networks and applications

IoT, outlook

IoT

Internet (of People)

- The traditional Internet consists of "things" as well
 - PCs, servers, routers

- But the end users generate the content, data
 - emails, documents, web pages, photos, etc.

- People have limited time, attention and accuracy
 - They are not good at monitoring and record all the happenings in the real world

Internet of Things (IoT)

- Kevin Ashton (1999)
 - MIT Auto-ID, Procter & Gamble

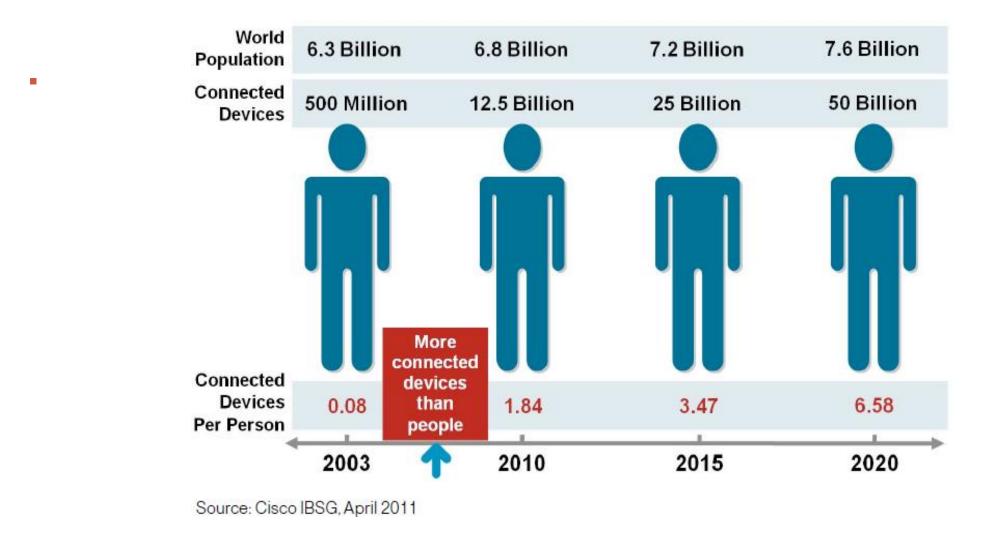
- Data gathering without human intervention
 - Intelligent devices with unique ID
 - Sensors, smart phones, vehicles, etc.
 - Monitoring and communicating
 - Collected data are sent to the cloud (network)
 - Analytics, filtering, aggregation, data mining
 - Generating value-added services
- It is not the pure data that are valuable, rather its analytics

What is IoT?

Network of "smart things"

- Why a thing is "smart"?
 - It has a CPU and memory, it can sense its environment using sensors
 - It is able to communicate

The first IoT device?

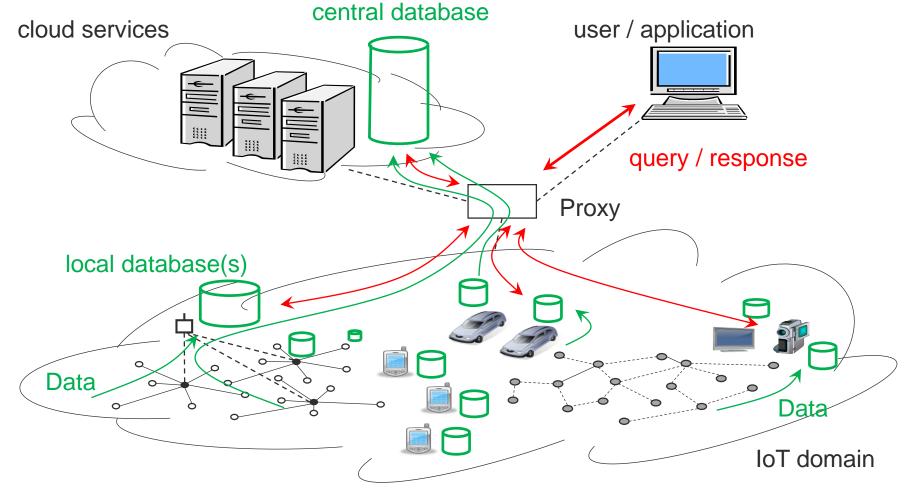

- A Coca-Cola vending machine at Carnegie Mellon University (1982 !!)
 - It was cheaper by 10 cents than the other machines
 - Everyone went there, but it was annoying if the machine was out of coke, or it was just reloaded and the coke was warm.
 - Four students Mike Kazar, David Nichols, John Zsarnay, and Ivor Durham
 - Let's connect the machine to the Internet!
 - It's state could be queried
 - Are all "empty" lamps turned on?
 - When was it reloaded? (Are the drinks cold enough?)
 - The machine became the most popular vending machine in whole Pennsylvania

How many things?

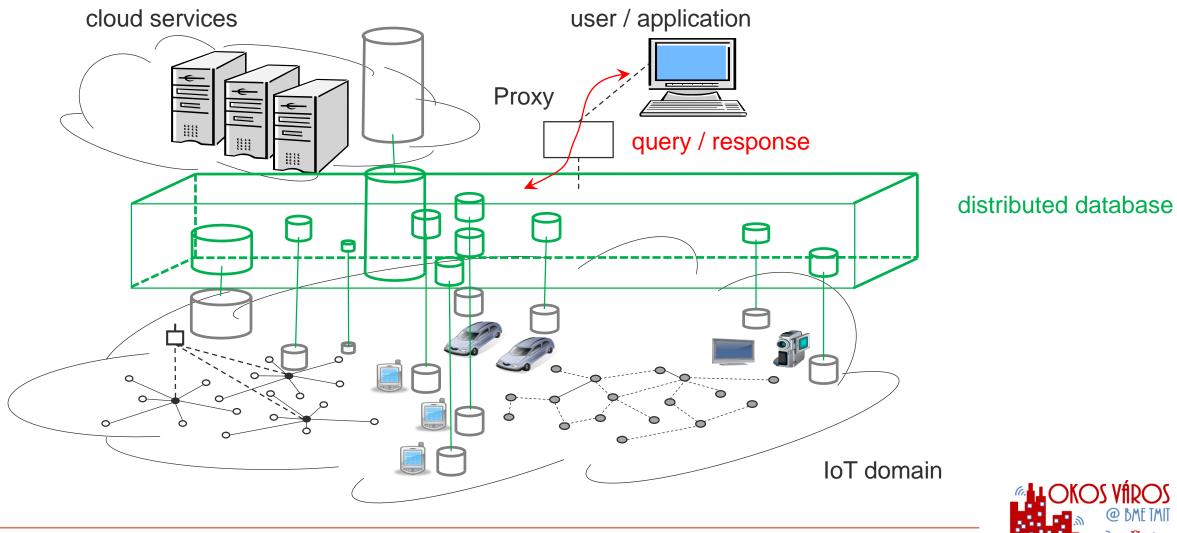
Cisco, Ericsson forecasts – 50 billion devices by 2020

Can collect data, and can communicate. What else?

- Where can the collected data be stored?
- How can it be processed?
 - Filtering, aggregation, correlation analytics, etc.. Big Data
- How are the information be given back to the IoT application?
- The sensor (IoT) devices cannot store and process the data in the long run
 - Limited memory (RAM, Flash), CPU, energy



Is it really necessary to send all data to the cloud?


- Radio communication is energy hungry
- It is advisable to do some preprocessing and aggregation locally
- The measurement and data transmission are two separate tasks
 - Measurements must be done according to the application's need
 - Data transmission must be done energy efficiently

Data in the cloud, but also in the IoT domain

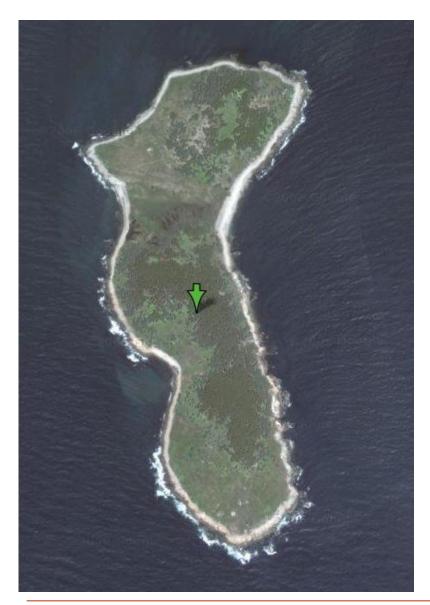
Distributed database between the cloud and the IoT domain

Caching in IoT

- Popular videos on youtube
 - (Slowly) changing popularity, static content
 - (relatively) easy to cache
- Popular web pages
 - Static pages are easy to cache
 - It's harder if the pages are dynamic, it is served directly from the server
- Popular sensor (IoT) data
 - "What are the traffic haracteristics on the Chain Bridge?"
 - Hard to cache, but it is worth it!
 - Not just because of energy efficiency, but because of scarce radio resources

Spring 2017

Related notions


- Ubiquituous networking / computing
 - Mark Weiser, Xerox Palo Alto Research Center, 1998
- Pervasive networks
- Everyware
- Disappearing computing
- Ambient networks and services
- Internet of Everything (Cisco)

Environmental monitoring

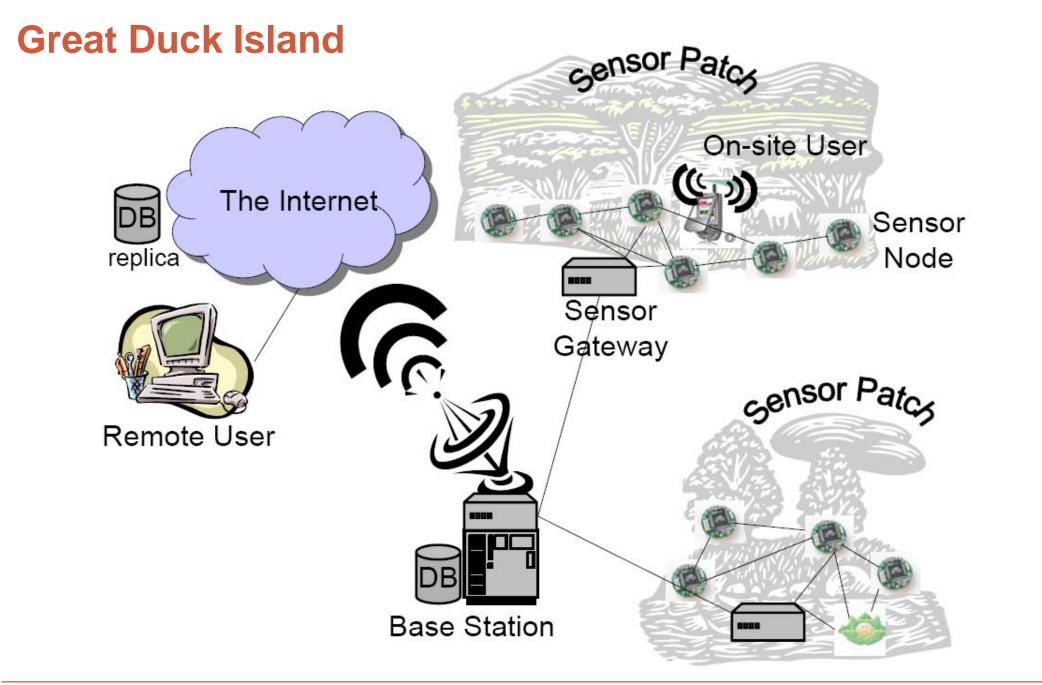
"Great Duck Island" project

Great Duck Island, Maine, USA (2002)

- 2,4 km x 0,8 km
- Intel and Berkeley joint project



- <u>Goal</u>: Monitoring the colony of Leech's Storm Petrel
- Monitoring:
 - nets holes during summer while hatching
 - microclimate of used/abandoned nests
 - all environmental parameters during the 7 months



Sensor networks and applications (VITMMA09), BME-TMIT

- Requirements of the application:
 - Internet access
 - Hierarchic network (wireless "backbone" is necessary)
 - 9-12 month continuous monitoring
 - No access to mains (solar panels if applicable)
 - Remote network management
 - Through the Internet, local presence is only available for 2-3 months each year, when deploying and collecting equipments
 - Seamless operation
 - Birds must not be disturbed
 - Interaction on site
 - Researcher arriving to the island can comminace with the sensor nodes with a handheld PDA
 - Monitored data (light, temperature, humidity, air pressure) periodically, storage as well

[₿] ((,)

Senzor motes

- Berkeley (most Crossbow) Mica mote
 - Single channel 916MHz RF Monolithics, duplex communication at 40 kbps
 - Atmel Atmega 103 microcontroller (4kHz, 512 kB)
 - 2db AA batteries

 Sensors have to be protected mechanically

- Sensor card: Mica Weather Board
 - own design, the sensors can be turned on and off remotely;
 - temperature, light, IR (Melexis), humidity (General Eastern, +-3% rel.), air pressure (Intersema, 300-1100 mbar/0.1 mbar)

- Energy limitation: The requirement is 9 months and 2.5 Ah from the two batteries, that is <u>8.15 mAh/day</u>.
- The application decides how the energy is allocated between the different tasks.

Operation	nAh
Transmitting a packet	20.000
Receiving a packet	8.000
Operating sensor for 1 sample (analog)	1.080
Operating sensor for 1 sample (digital)	0.347
Reading a sample from the ADC	0.011
EEPROM Read Data	1.111
EEPROM Program/Erase Data	83.333

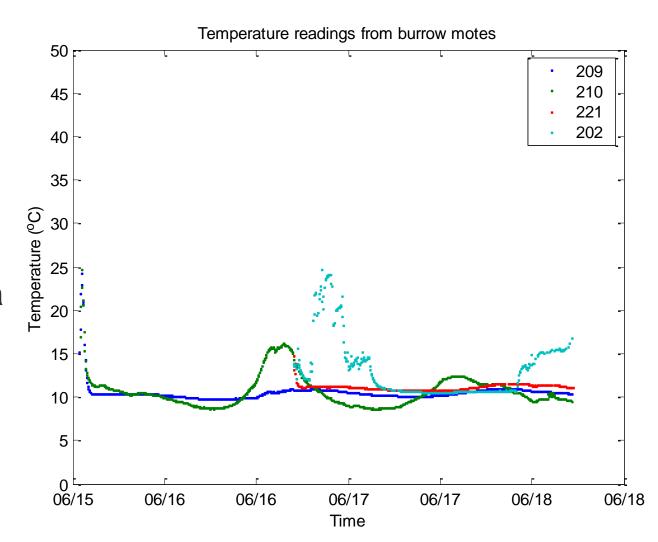
- Sensor gateways
 - CerfCube embedded system
 - CompactFlash based 802.11b adapter
 - Embedded Linux op. system
 - IGB(!) IBM MicroDrive
- Gateway power consumption 2.5 W(!)

 Solar panels with 60-120W power when full sunshine + 50-100Wh chemical batteries

Base station

- Connecting to the Internet via full-duplex satellite connection
- Laptop + relational database
- Unattended operation and maintenance (with unexpected restarts)

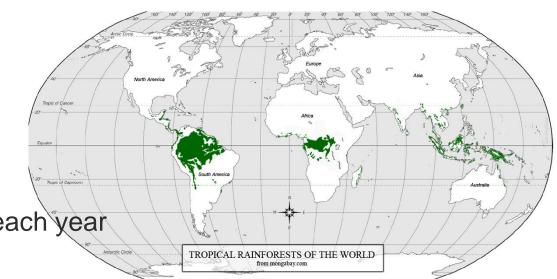
- Relational database
 - SQL database
 - Time stamped sensor data,
 - Information on sensor states (e.g., battery level)
 - Information on network state (connectivity and routing information)
 - Meta-data (e.g., sensor locations, type)
- "Gismo" handheld PDA
 - iPaq PDA, Linux
- Sensor networks
 - Multi-hop communication
 - In network preprocessing


- Problems during the first trials:
 - Sensors are too big, don't always fit into the holes.
 - Sensors are not protected enough (corrosion)
 - Not robust enough, high losses among nodes -> missing measurement data, the quality is inadequate scientifically

Improvements:

- Mica2dot platform
- Calibrated, digital sensors
- Miniature Weather Station sensors

- Application status (July 2003):
 - 26 nests monitored
 - 26 Weather Station sensors
 - 2 base stations, 2 full database (robustness)
 - Webcams for surveillance of the area



Rainforest monitoring

Rainforest monitoring

- One third of all the forest areas on Earth are rainforests
 - ...still, but 200.000 square kilometers are cleared each year
 - (Area of Hungary: 93.000 km2)

- Yearly amount of rain is between 2000 and 4000 mm on the average
 - (5-600 mm in Hungary)
- About 60-70% of all species on Earth are from here
 - Millions of unexplored plants, insects and microorganisms
- The 28% of oxigene in air are produced here via photosyntheses.

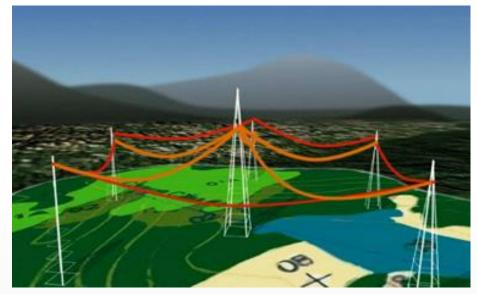
Layers of rainforest

Canopy

- trees 35-40 meters high, shrouds are continuous
- ~50% of species of plants on Earth live here
 - parasites on branches
- ~25% of insect species
- Hardly known by scientists, much to explore!

below canopy

- Only 5% of light comes down
- Rich on animal species (birds, snakes, insects)
- Ground level
 - Only 2% of light
 - Rivers, swamps rich in plant varieties



Atlantic Rainforest Sensor Net Research

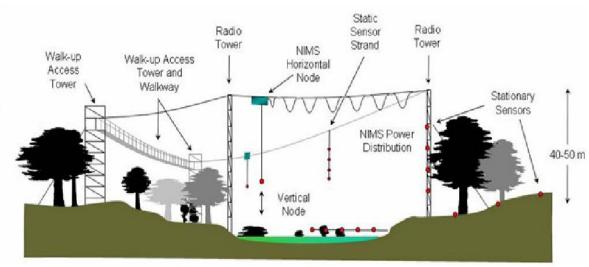
- Project partners (2009):
 - Microsoft Research
 - Johns Hopkins University (Life Under Your Feet)
 - Sao Paulo Research Foundation FAPESP
 - Brazlian National Institute for Space Research INPE
- Monitoring system
 - Towers above canopy level
 - 1 central tower (60m high); 5 smaller towers around
 - Cables between towers
 - 2 meters above canopy; 1 meter above ground level; in between in the middle as well
 - 600 sensors ounted on the cables
 - 18 million measurements each month (40 measurements / sensor / hour)

Atlantic Rainforest Sensor Net Research

- Sensors
 - Humidity
 - Temperature
 - Light

Data gathering

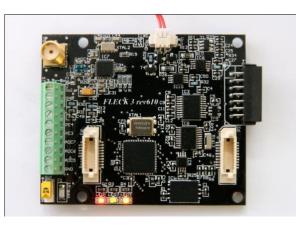
- Researchers visit the site with laptop and gather the data
 - □ Motes store the data in their flash memory
 - □ Send the data to the central tower via radio
 - $\hfill\square$ No need to climb trees or cables
 - Single-hop communication


Atlantic Rainforest Sensor Net Research

Costa Rica

- UCLA (University of California Los Angeles
 - Center for Embedded Networked Sensing
 - 4-6 million USD yarly support from NSF
 - National Science Foundation
- La Salva Biological Station, Costa Rica
 - Mobile sensors on cables
 - Stops after each 1 meter for 30 secs, measure, then proceeds
 - Temperature, CO₂, humidity, precise 3D air movement, convection, sunlight, photosynthetic active radiation (PAR, 400-700 nm)

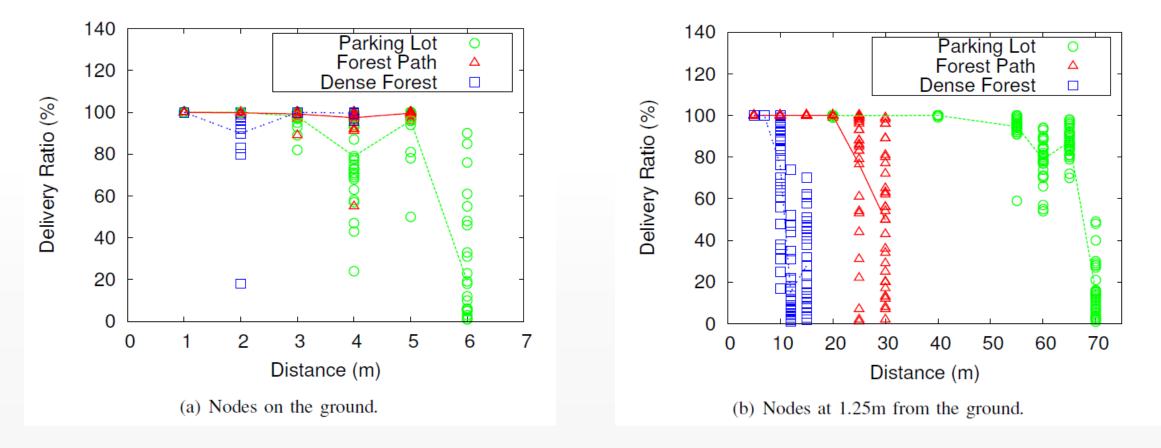
Costa Rica



Springbrook National Park South East Queensland, Ausztrália

- Monitoring the expansion of the rainforest
 - Comparing environmental parameters
 - Open spaces (grass)
 - Young forest areas
 - Old, dense forests
- Hardware- FleckTM-3 sensor platform
 - Atmega128 microcontroller
 - Nordic NRF905 radio, 915 MHz
 - 3 pcs.1.2V 2700mAh rechargeable batteries
 - Solar panels

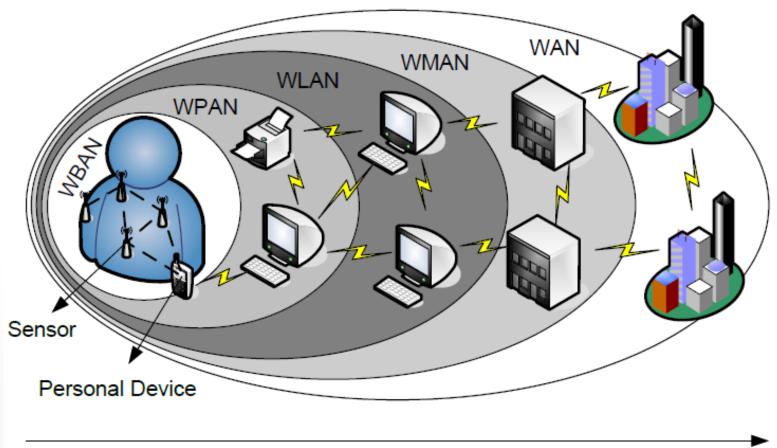
Radio communication in rainforest


- Three different environments:
 - Parking lot (for reference)
 - 20 x 200 m, no obstacles
 - Forest path
 - Dense rainforest

Figueiredo, C. M. S.; Nakamura, E. F.; Ribas, A. D.; Souza, T. R. B.; Barreto, R. S., "Assessing the Communication Performance of Wireless Sensor Networks in Rainforests", in Proceedings of the 2nd IFIP Wireless Days, 2009.

Radio communication in rainforest

- Sensors on ground level, and at 1,25 m height
 - Crossbow MicaZ

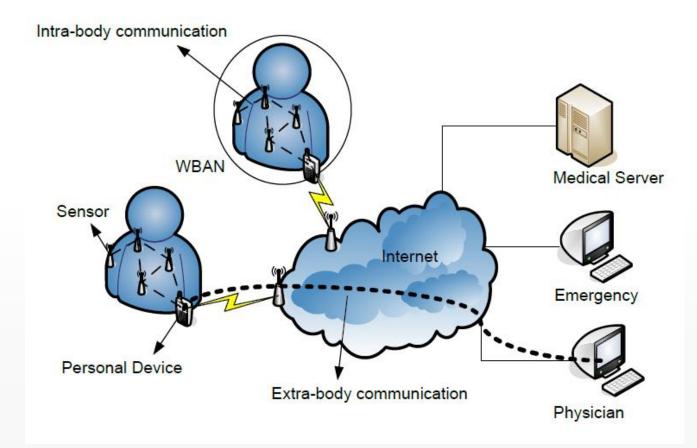

Healthcare sensor networks

Motivation

- Aging societies in developed countries
 - The medical care systems are VERY expensive
 - E.g., 1800 Billion USD in the US (in 2004), 20% of GDP
- eHealth
 - Healthcare with electronic devices
 - Cheaper (on the long run)
 - No need for personnel, hospital bed
 - More freedom for the patients
- mHealth
 - Mobile communications
- Wireless Body Area Network (WBAN)
 - K. Van Dam, S. Pitchers, and M. Barnard, "Body area networks: Towards a wearable future" in Proceedings of WWRF kick of meeting, Munich, Germany, 6-7 March 2001.

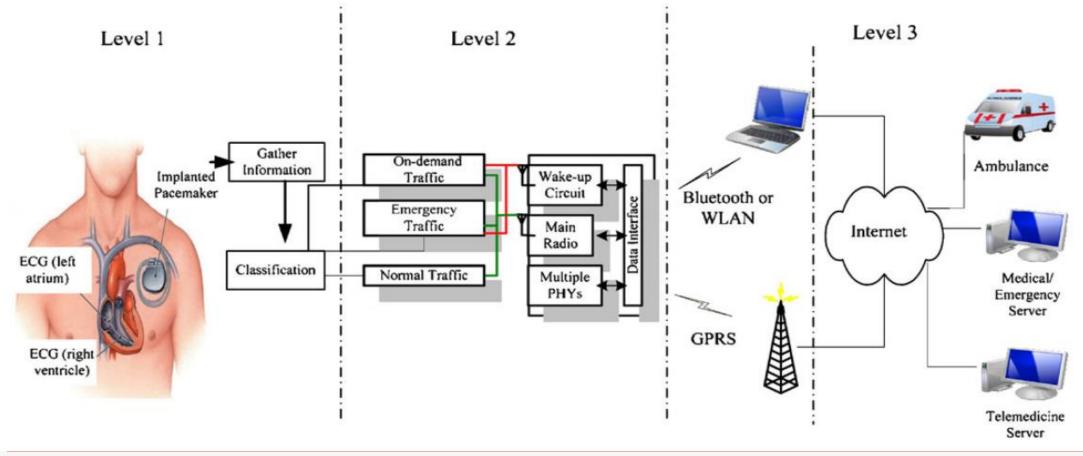
Wireless Body Area Network (WBAN)

- Body area:
 - Sensors in body
 - Sensors on body
 - Sensors inclothing
 - Personal devices



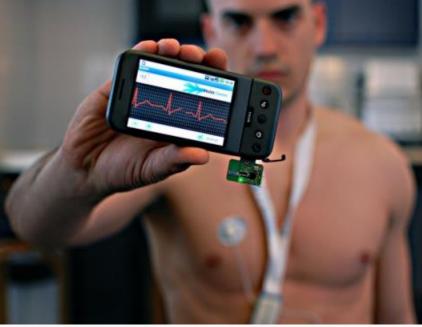
Communication Distance

Wireless communication link

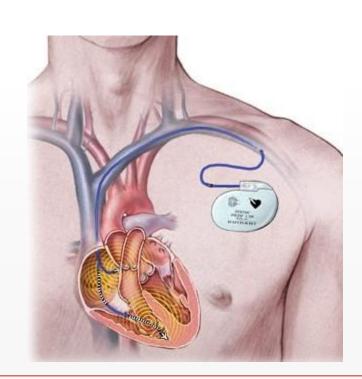

Wireless Body Area Network (WBAN)

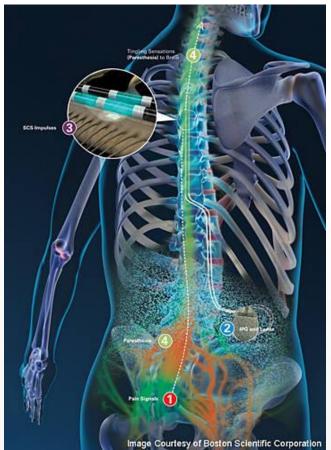
- Sensors monitor different vital signs real time
 - Data are sent to the medical center
 - Long term monitoring much more useful than occasional measurements
- Communication in/on body
 - PDA or smartphone as sink or gateway

Wireless Body Area Network (WBAN)


- Three traffic types:
 - On-demand: queries by doctor; Emergency traffic: unexpected; Normal traffic: continuous monitoring and sending

WBAN sensors


- Continuous monitoring
 - Body temperature
 - Blood pressure, pulse, respiration
 - EKG elektrocardiogram
 - heart monitoring
 - EEG electroencephalography
 - brain functions monitoring



WBAN actuators

- Insulin pump
 - blood-sugar monitoring
- Backbone stimulator, muscle stimulator
- Artificial retine
- Pacemaker

RFID identifier

- Implanted
 - Identification, personal data, medical data...

WBAN vs. WSN

- Very limited energy (WBAN)
 - Small sizes (< 1 cm³)
 - Non-rechargeable, but expected long lifetime (years or even decades for implants)
 - Energy can be harvested from body heat or movements
 - Limited computational capacity, memory
- There is no redundance, only those devices are implanted that are absolutely needed
- Very low radio transmission power levels
- Radio waves are damped by body tissiues -> highy packet losses
- Topology is changing because of body movement
- For medical data, the reliability (and low delay) is very important
- Privacy issues

Ambient Assisted Living (AAL)

- High priority in the EU
- Smart homes
 - Sensors in house, monitoring the activity of elderly

