

Sensor networks and applications

Routing (flat, hierarchical)

Content

Networking layer

WSN topology

Routing

- Routing planning issues
- Network and routing modeling
- Routing protocols
 - Flat
 - Hierarchic
 - Location-based

Example: Finding the shortest path

- <u>Task</u>: Find the shortest path in graph G(N, A) from s (source) to t (target).
- Edges are labeled with weights:

$$\begin{split} & d_{i,j} \in R \Leftrightarrow (i,j) \in A \\ & d_{i,j} = \infty \Leftrightarrow (i,j) \notin A \\ & d_{i,i} = 0 \end{split}$$

- Find the L path between s and t where the sum of weights is minimal (shortest path).
 - One possible solution: Dijkstra algorithm

Example: Dijkstra algorithm

Notation:

- D_i = iterated distance of node *i* from s (s=,,1")
- P = set of considered nodes

Algorithm:

- **1.** <u>initialization</u>: $P = \{1\}$; $D_j = d_{1j}$ for all j
- 2. <u>iteration</u>: find *i* where $D_i = \min_{\forall j \notin P} D_j$

3. let:
$$P = P \cup \{i\}$$

 $D_j = \min\{D_j, d_{ij} + D_i\}$

4. stop condition: If N = P, STOP else GOTO 2.

Flat routing

Flat routing

- The network nodes are **equal**.
- Sensor nodes cooperate to fulfil the common task.
- Unique ID assignment is not always possible because of the high number of nodes => data-centric routing

Data-centric routing:

- The BS sends queries towards certain areas and waits for the answers from the sensors in the area.
- Attribute-based addressing is needed to specify the type of expected data.

Flat routing algorithms

- SPIN Sensor Protocols for Information via Negotiation
- Directed diffusion
- Rumor routing

SPIN

- SPIN Sensor Protocols for Information via Negotiation
- Spreads all data to all nodes, thus the required information can be accessed from any node at once.
- protocol <u>family</u>, that is...
 - able to adapt to nodes' resources.
 - based on preliminary data negotiations.
 - Time-driven.
- <u>Idea</u>: Nearby nodes have the same (or very similar) data, so it is enough to transmit those data that are not available at the neighbors.

Meta-data:

- All data are labeled with a descriptor (meta-data) that describes the data.
- Nodes negotiate based on meta-data before the actual data transmission takes place. Thus, redundant data transmission can be avoided.
- Semantics of meta-data is application specific, it is not defined in SPIN.
 - E.g., the unique ID of a sensor node can be used as meta-data, since it can describes what area is covered by the sensor.

- 3 phases of SPIN protocol:
 - (1) data advertisement: ADV / (2) data request: REQ / (3) data transmission:
 DATA
- Protocol steps:
 - If a sensor node aquires new data, it advertises the data by its meta-data by ADV broadcast.
 - If one of its neighbor is interested in the new data, it requests for it (REQ). The new data is transmitted by the source in a DATA message.
 - When the neighbor receives the (new) data, it starts advertising it to its neighbors (GOTO 1)
 - As a consequence, the new data eventually spreads out into the whole network.

- Variants of SPIN protocol family:
 - **SPIN-1**: see above
 - SPIN-2: Version 1 extended with an <u>energy-aware negotiation phase</u>: If a node has too low energy it will not participate in data advertisement and transmission.
 - **SPIN-BC**: Optimized for broadcast channel
 - **SPIN-PP**: Optimized for point-to-point (hop-by-hop) communication.
 - **SPIN-EC**: Variant of SPIN-PP by adding some energy heuristics.
 - **SPIN-RL**: Optimized for "lossy" channels.

Advantages:

- The amount of data transmitted is smaller compared to classical floodingbecause of meta-data negotiations. (no "data explosion")
- Energy adaptivity yields energy efficient operation.
- Can be applied when sensors can be mobile.
 - There is no need for knowing all neighbor.

Disadvantages:

- It is not 100% sure that all data reach those who are interested.
 - E.g., if direct neighbors are not interested in the data, they will not relay it.

Directed diffusion (DD)

- **Data-centric** (DC) and application-aware protocol.
 - Data aquired by the sensor is described by an **attribute-value pair**.
 - Many sources send data to a single destination (BS – base station).
 - **Aggregation** is possible by combining data streams!
- <u>Idea</u>: Data coming from diferent nodes can be aggregated <u>within the</u> <u>network</u>.

- Way of communication:
 - If the BS needs information, it sends a query to the network by broadcast:.
 - query = task to complete by the network
 - The query diffuses into the network step-by-step, all nodes relay it to its neighbors (hop-by-hop).
 - Nodes set up <u>gradients</u>:
 - gradient = attribute-value pair + direction
 - E.g., all nodes set their gradients to the node from which it received the query.
 - The size of the gradient can be different from node to node.
 - Data transmission can happed backwards toward the greatest gradient.
 - Data can be aggregated on the way towards the sink.

(a) Propagate Interest

(b) Set up Gradients

(c) Send data and path Reinforcement

3. ábra. Példa kérés terjesztésre szenzorhálózatban.

- The BS repeats the query periodically even when it starts to collect information.
 - E.g., information relaying is not always guaranteed.
- The goal is to build up an "efficient" tree along which the information can be aggregated.
- The efficiency of data aggregation depends heavily on:
 - number and location of nodes;
 - network communication topology;
 - the <u>event model</u>.

Directed diffusion - example

(a) Event Radius Model

(b) Random Source Model

□ Event models:

ER – Event Radius

RS – Random Sources

□ Aggregation is much more efficient for the ER model.

Advantages:

- It is not necessary to know the topology.
- Data traffic is demand-based. ^(C)

Disadvantages:

- Data traffic is only demand-based. ☺
- The query propagates to the target node(s) by flooding, even if only a small subset of nodes are interested in answering it.
- Maching queries with available data is also energy consuming.

Rumor routing

- Variant of directed diffusion.
 - Avoids flooding of queries.
- <u>Idea</u>: Instead of flooding, it is enough to drive the queries only to the nodes that monitored the event or they know about it.
- Useful for applications where...
 - the number of events are small, and the number of queries are high;
 - geographic routing can not be applied

Rumor routing

- Solution: The event should be propagated as well, not just the query!
 - When a node senses an event, it adds this to its local event table.
 - It creates a "long-life" <u>agent</u> packet.
 - The agent starts to spread the information within the network.
 - The information is recorded by the nodes who receive the agent.
 - When a query arrives, any node can answer it instead of broadcasting, if it knows the way to the source (i.e., the agent visited the node before).

Rumor routing

- Nodes only maintain a single route between the source and destination, in contrast to directed diffusion.
- The lifetime (i.e., TTL field) of a query and the agent is a parameter of the protocol
- Planning the path for an agent is non-trivial, and it has a high impact on efficiency..

Advantage:

Energy can be spared by avoiding flooding.

Drawback:

- It only works when the number of events is small.
 - If there are too many event in the network, the cost of maintainin gthe event tables can be very high, if there is no interest towards the events.

Hierarchic routing

LEACH, TEEN, APTEEN

Routing paradigms

- Routing protocols based on network structure
 - Flat
 - Hierarchical
 - LEACH, TEEN, APTEEN
 - Location-based
 - other...

Hierarchical routing

- Hierarchical = cluster-based
- In a hierarchical architecture...
 - the nodes have different roles,
 - (Typically) the nodes with more energy and computing resources deal with information processing and transmission.
- <u>Advantage</u>: calability(?), efficient communication
- Hierarchical routing has <u>two layers</u>:
 - The tasks of layer 1 are cluster formation and cluster-head election.
 - The actual routing takes place in layer 2.
- In most of the cases the interesting question is not the routing itself but the claster formation and cluster head management!

LEACH protocol

- LEACH = Low Energy Adaptive Clustering Hierarchy
- Cluster-based solution with distributed cluster formation
- Cluster heads (CHs) are elected randomly, and the role of cluster head is changed from time to time.
- The CH aggregates and compresses the data coming from the sensor nodes, then sends them to the BS.
- TDMA/CDMA MAC for intra-cluster and extra-cluster communication to avoid collisions.
- Data gathering is centralized and periodic.

- Assumptions:
 - All nodes are within radio range of BS.
 - All nodes have the resources to become a CH.
 - All nodes are able to use CDMA and TDMA for communication.
 - All nodes send data periodically.
 - Data coming from neighbors are strongly correlated.

- 2 phases of the protocol:
 - setup phase
 - cluster formation
 - cluster head election
 - steady phase
 - controlling data transmission
- The network gets back to the setup phase periodically.

Setup phase

- 1. All nodes draw a random number *r*. If *r* is smaller than a threshold value, then the node becomes a CH.
- 2. All CHs advertise itself.
- **3**. All non-CH nodes selects one CH that it wants to belong to (based on the received signal strength, for example), then notifies the CH about its decision.
- 4. All CHs assign a TDMA schedule to its nodes within cluster.

Steady phase

- 1. Nodes sense and transmit data to the CH.
- 2. The CH collects the data, aggregates it and sends to the BS using CDMA code.

Problems:

- It is non-trivial how to set the threshold value for the nodes to become a CH.
 - It can be a problem when the node density in inhomogeneous, so there will be no CH in a given area with some probability.
- The dynamic and periodic cluster formation can consume considerable amount of energy.
- The protocol assumes that all nodes have the same amount energy in every round.

Possible extenion: A particular node chooses its random number based on its enery level. (I.e., depleted nodes will be CHs with smaller probability).

