

### **Sensor networks and applications**

**Physical layer** 

#### **Features of sensors**

- Small devices with <u>sensing</u>, <u>processing</u> and (radio) <u>transmitting</u> capabilities..
- Limited resources
  - CPU: (< 10 MIPS);
  - memory: (~ 4 kbyte)
  - limited energy
    - (e.g., AAA batteries)









Particle-C

### **Features of sensor nets**

- Many, small, cheap sensors.
- Wireless communication
  - ad-hoc network formation, communication with slow bitrate (~10– 100 kbps)
- Other requirements:
  - long lifetime
  - unattended operation
  - robustness





# Physical layer

Existing solutions, design constraints

#### Content

- Physical layer
  - existing solutions & special WSN solutions
  - energy efficiency
- Data link layer
  - MAC solutions



### **Physical layer**

#### Physical layer:

"The physical layer consists of the basic networking **hardware transmission technologies** of a network. ... this is perhaps the most complex layer in the OSI architecture."

"Cross-layer design"

| 150 051            |
|--------------------|
| Application layer  |
| Presentation layer |
| Session layer      |
| Transport layer    |
| Networking layer   |
| Data link layer    |
| Physical layer     |

#### **Features and requirements**

- Typically very small amount of data to transmit.
  - few bits/day
- Better lower transmission rates and higher delays for <u>lower prices</u> and <u>longer lifetime</u>.
  - PI: One (or more) year(s) lifetime with 750 mAh AAA battery
- Universal (globális), unlicenced operation.
  - Limits the available frequency bands and modulation techniques.



#### **Examples for physical layer**

- The communication can be of electromagnetic (RF, IR) or acoustic solutions.
- Existing radiofrequency (RF) solutions:
  - Bluetooth
  - IEEE 802.11b (WLAN)
  - (IEEE 802.15.4)
- Special WSN solutions
  - PicoRadio
  - WINS, µAMPS
  - nrf24, NBIoT, LoRa, ...



## **Design issues for PHY**

#### **Design issues for physical layer**

The two most important requirements:

#### low cost

and

long lifetime.



#### Price as design constraint...

- The cost of the physical layer is primarily the price of hardware
  - price of chips + additional external components
- Goal: single chip + antenna + batteries
  - (Integrating the antenna and the batteries are hard, altough not impossible.)



#### Price as design constraint...

- One of the most difficult task is the integration of quartz oscillator for reference frequency.
  - An alternative: MEMS (micro-electromechanical) rezonator
  - The technology is not yet mature enough, there can be problems with accuracy and stability.

 Consequence: Design the physical layer where the requirements for the frequency are not too strict.



#### Price: analogous vs. digital

- The price of the chip depends on the ratio of analogous and digital components.
  - The size of the digital elements are going down as lithography advances.
  - The size of the analogous elements typically does not go down with advances of technology. (E.g., physical size of passive electric components, like area of capacitors)



#### Price: analogous vs. digital

- Possible two options:
  - Analogous elements using "large" and "old" (and thus cheap) technology.
  - Only digital components, new technology, thus small (thus cheap) circuits.
- In the long run, the trend favours "all-digital" technology.
  - The energy consumption of RF circuits is also proportional with their size.



#### **Price: large quantity...**

Unit price goes down with large quantity.

 Consequence: <u>Design of physical layer that is in harmony with most</u> <u>countries' regulations.</u>

Solution: ISM band

• (But which one? 2.4 GHz, 5.8 GHz or 24 GHz?)



#### Price: available technologies...

- The technology of circuits operating at high (e.g., 60 GHz) frequency range (e.g., SoC silicone CMOS) is costly at the moment and suboptimal regarding energy consumption..
- Low (e.g., 1 GHz) frequencies the size of the node is problematic because of the small antenna.
- The selection of optimal ISM band is a trade-off between price and energy efficiency, and antenna-efficiency.
- Optimal today: 2.4 GHz ISM band



#### 2.4 GHz ISM band

- The 2.4 GHz-es ISM band is far from being "empty":
  - E.g., IEEE 802.11b (Wi-Fi) WLAN, Bluetooth WPAN
  - Different technologies use different channel access strategies -> they can be highly unfair!
- The co-eistence and compatibility of different services is of primary importance for physical layer design!
  - E.g., spread spectrum solutions for robustness



#### 2.4 GHz ISM band

- Possible alternative: 3.1-10.6 GHz UWB (ultra-wideband)
  - Positioning capabilities are very good (few centimetres).
  - High node density is possible.
  - Standardized only in the US.



#### **Energy consumption (lifetime)**

- The two components of the energy-problem:
  - 1. Energy source (battery)
  - 2. Energy consumption of the system.



#### **Energy sources**

- The low energy consumption of sensors makes it possible to use novel energy sources
  - E.g.: solar cells, RF, mechanical vibration
- The use of "traditional" dry batteries are most common
- <u>Effect of charge regeneration</u>: The total capacity of a battery can be much higher if drained with a series of impulses, instead of a constant drain.
- In WSNs, the bursty nature of data transfer together with low energy consumption on the average fits ideally with this: the high-power requirement of some components (e.g., radio) are only for short period of time, with inactive periods in between.



#### **Energy consumption - example**

• 1 pc of AAA batteries (750 mAh), 1 year lifetime (8760 hours)

 $I_{avg} = 750 mAh/8760h = 86 \mu A$ 

• Average power consumption (1.8 V with voltage regulator)

$$P_{avg} = 1.8V \cdot 86 \mu A = 154.8 \mu W$$

 Typically 2.4 GHz CMOS transciever with 32 mW power consumption when transmitting, and 38 mW when receiving. (average of ~35 mW)

$$I_{on} = 19.5 mA \qquad I_{stby} = 30 \mu A$$

Then from

$$I_{avg} = T_{on} \cdot I_{on} + (1 - T_{on}) \cdot I_{stby}$$

• it results:

$$T_{on} = 0.0029$$



### **Energy consumption**

- $T_{on}$ =0.0029 is practically <u>4 minutes per day</u>.
- In spite of low information bit rate, high bitrate is required during the (short) active periods.
- *T<sub>on</sub>* includes the "warm-up" period as well.
  - Assuming many but short communication periods, the draining energy for the "warm-up" periods can be significant!
- The DSSS solutions with 250 kbps (raw) transfer rate are preferable.



## Data link layer

#### MAC

#### Content

- Data link layer
- Wireless MAC techniques
  - ALOHA
  - CSMA Carrier Sense Multiple Access
  - Polling
  - MD (Mediation Device) protocol
- Sensor network solutions
  - WINS
  - PicoRadio
  - S-MAC



#### **Data link layer**

- Main tasks:
  - framing
  - error detection and correction
    - E.g., Hamming code, CRC, Go-Back-n
  - traffic control (flow control)
    - E.g.: ACK, Stop&Wait
  - MAC Medium Access Control

| ISO OSI      |
|--------------|
| Application  |
| Presentation |
| Session      |
| Transport    |
| Networking   |
| Data link    |
| Physical     |



#### **Medium Access Control (MAC)**

- Two types of networks:
  - 1. point-to-point communication between any two nodes
  - 2. broadcast channel for all nodes
- The channel is dedicated in point-to-point communication, so there is no need for MAC.
- The main question in using broadcast channel:
  "Who is the winner to have the right to use the channel?"
- Alternative naming:
  - Multiple Access
  - Random Access



#### **Medium Access Control (MAC)**

- The channel allocation can be **static** or **dynamic**
- **Static** allocation solutions:
  - frequency division (FDM Frequency Division Multiplexing)
  - time division (TDM Time Division Multiplexing)
  - code division (CDM Code Division Multiplexing)
  - Disadvantage: For high number of nodes and/or uneven traffic load the utilization drops dramatically.
- By Dynamic channel allocation, channel access can be controlled to take into account the varying needs.



#### MAC – Assumptions, requirements

- **Assumptions** for channel allocation:
  - *N* independent nodes communicate
  - Single channel, all nodes transmit and receive on this same channel
  - <u>Collision</u>: If two frames overlap in time, the signals are mixed, collision occurs.
  - Collision can be detected by all nodes.
  - Time can be continuous or sliced.
  - <u>Channel monitoring</u>: Are the nodes able to sense if someone else already uses the channel?

